Мода и стиль. Красота и здоровье. Дом. Он и ты

4 из чего состоят кометы. Что такое кометы? Отличия комет друг от друга

Комета, небольшое небесное тело (ядро), имеющее протяжённую разреженную оболочку и движущееся по сильно вытянутой орбите, при приближении к Солнцу обильно выделяющее газ. С кометами связаны разнообразные физические процессы, от сублимации (сухое испарение) льда до плазменных явлений. Кометы – это остатки формирования Солнечной системы, переходная ступень к межзвездному веществу. Наблюдение комет и даже их открытие нередко осуществляются любителями астрономии. Иногда кометы бывают столь яркими, что привлекают всеобщее внимание. В прошлом появление ярких комет вызывало у людей страх и служило источником вдохновения для художников и карикатуристов.

Характеристика орбит

Кометы движутся по вытянутым траекториям. Орбита комет характеризуется параметрами, которые описывают размер орбиты, ее положение относительно Солнца: перигелийным расстоянием q (минимальным расстоянием от Солнца) и эксцентриситетом е (степенью вытянутости орбиты), периодом обращения кометы P , большой полуосью орбиты а . Орбита кометы может лежать не в плоскости эклиптики. Поэтому орбита кометы может характеризоваться углом наклона плоскости орбиты кометы i к плоскости эклиптики.

Орбита кометы и изменение направления хвостов кометы Хейла–Боппа

Кометы могут периодически возвращаться к Солнцу. Такие кометы называют периодическими. У периодических комет определены перигелий q (минимальное расстояние от Солнца), афелий Q (максимальное расстояние от Солнца).

Названия комет

Кометы открывают достаточно часто. Названия комет отражают время от открытия.

Многие кометы носят названия NEAT , а далее год открытия и цифры. Так называют кометы, открытые в рамках наблюдений по программе NEAT (Near Earth Asteroid Tracking – программа слежения за астероидами, пролетающими вблизи Земли).

Комета NEAT С 2001 G 4

Обозначения комет расшифровываются так – C/2004 R1: 2004 – текущий год, R – буквенное обозначение полумесяца открытия 1 – номер кометы в данном полумесяце. Буква P ставится впереди, если комета периодическая, например P/2004 R1.

Месяцы

январь

февраль

март

апрель

май

июнь

1–15

16–30(31)

Месяцы

июль

август

сентябрь

октябрь

ноябрь

декабрь

1–15

16–30(31)

Кроме того, кометы могут носить фамилии людей открывших их, например, комета Галлея, комета Мачхолца, комета Шумейкера–Леви 9 или комета Мак-Нота.

Движение и пространственное распределение

Все кометы являются членами Солнечной системы. Они, как и планеты, подчиняются законам тяготения, но движутся весьма своеобразно. Все планеты обращаются вокруг Солнца в одном направлении (которое называют «прямым» в отличие от «обратного») по почти круговым орбитам, лежащим примерно в одной плоскости (эклиптики), а кометы движутся как в прямом, так и обратном направлениях по сильно вытянутым (эксцентричным) орбитам, наклоненным под различными углами к эклиптике. Именно характер движения сразу выдает комету.

Долгопериодические кометы (с орбитальным периодом более 200 лет) прилетают из областей, расположенных в тысячи раз дальше, чем самые удаленные планеты, причем их орбиты бывают наклонены под всевозможными углами. Короткопериодические кометы (период менее 200 лет) приходят из района внешних планет, двигаясь в прямом направлении по орбитам, лежащим недалеко от эклиптики. Вдали от Солнца кометы обычно не имеют «хвостов», но иногда имеют еле видимую «кому», окружающую «ядро»; вместе их называют «головой» кометы. С приближением к Солнцу голова увеличивается и появляется хвост.

Типы хвостов

Типы хвостов комет исследовал русский астроном Ф. А. Бредихин. В конце XIX века от разделил хвосты комет на три типа:

  • I тип хвостов комет прямой и направлен в сторону от Солнца по радиусу вектору;
  • II тип хвостов широкий, изогнутый;
  • III тип хвостов направлен вдоль орбиты кометы. Такие хвосты неширокие.

Довольно редко встречаются кометы, хвосты которых направлены к Солнцу. Это так называемые аномальные хвосты. Под воздействием солнечного ветра пылевые частицы отбрасываются в направлении, противоположном Солнцу, формируя пылевой хвост кометы. Пылевой хвост кометы имеет обычно желтоватый цвет и светится отражённым от Солнца светом.

Структура

В центре комы располагается ядро – твердое тело или конгломерат тел диаметром в несколько километров. Практически вся масса кометы сосредоточена в ее ядре; эта масса в миллиарды раз меньше земной. Согласно модели Ф.Уиппла, ядро кометы состоит из смеси различных льдов, в основном водяного льда с примесью замерзших углекислоты, аммиака и пыли. Эту модель подтверждают как астрономические наблюдения, так и прямые измерения с космических аппаратов вблизи ядер комет Галлея и Джакобини – Циннера в 1985–1986.

Когда комета приближается к Солнцу ее ядро нагревается, и льды сублимируются, т.е. испаряются без плавления. Образовавшийся газ разлетается во все стороны от ядра, унося с собой пылинки и создавая кому. Разрушающиеся под действием солнечного света молекулы воды образуют вокруг ядра кометы огромную водородную корону. Помимо солнечного притяжения на разреженное вещество кометы действуют и отталкивающие силы, благодаря которым образуется хвост. На нейтральные молекулы, атомы и пылинки действует давление солнечного света, а на ионизованные молекулы и атомы сильнее влияет давление солнечного ветра.

У каждой кометы несколько различных составных частей:

  • Ядро: относительно твердое и стабильное, состоящее в основном изо льда и газа с небольшими добавками пыли и других твердых веществ.
  • Голова (кома): светящаяся газовая оболочка, возникающая под действием электромагнитного и корпускулярного излучения Солнца. Плотное облако водяного пара, углекислого и других нейтральных газов сублимирующих из ядра.
  • Пылевой хвост состоит из очень мелких частиц пыли уносимых от ядра потоком газа. Эта часть кометы лучше всего видна невооруженным глазом.
  • Плазменный (ионный) хвост состоит из плазмы (ионизованных газов), интенсивно взаимодействует с солнечным ветром.

Содержание статьи

КОМЕТА, небольшое небесное тело, движущееся в межпланетном пространстве и обильно выделяющее газ при сближении с Солнцем. С кометами связаны разнообразные физические процессы, от сублимации (сухое испарение) льда до плазменных явлений. Кометы – это остатки формирования Солнечной системы , переходная ступень к межзвездному веществу. Наблюдение комет и даже их открытие нередко осуществляются любителями астрономии. Иногда кометы бывают столь яркими, что привлекают всеобщее внимание. В прошлом появление ярких комет вызывало у людей страх и служило источником вдохновения для художников и карикатуристов.

Движение и пространственное распределение.

Все или почти все кометы являются составными частями Солнечной системы. Они, как и планеты, подчиняются законам тяготения, но движутся весьма своеобразно. Все планеты обращаются вокруг Солнца в одном направлении (которое называют «прямым» в отличие от «обратного») по почти круговым орбитам, лежащим примерно в одной плоскости (эклиптики), а кометы движутся как в прямом, так и обратном направлениях по сильно вытянутым (эксцентричным) орбитам, наклоненным под различными углами к эклиптике. Именно характер движения сразу выдает комету.

Долгопериодические кометы (с орбитальным периодом более 200 лет) прилетают из областей, расположенных в тысячи раз дальше, чем самые удаленные планеты, причем их орбиты бывают наклонены под всевозможными углами. Короткопериодические кометы (период менее 200 лет) приходят из района внешних планет, двигаясь в прямом направлении по орбитам, лежащим недалеко от эклиптики. Вдали от Солнца кометы обычно не имеют «хвостов», но иногда имеют еле видимую «кому», окружающую «ядро»; вместе их называют «головой» кометы. С приближением к Солнцу голова увеличивается и появляется хвост.

Структура.

В центре комы располагается ядро – твердое тело или конгломерат тел диаметром в несколько километров. Практически вся масса кометы сосредоточена в ее ядре; эта масса в миллиарды раз меньше земной. Согласно модели Ф.Уиппла, ядро кометы состоит из смеси различных льдов, в основном водяного льда с примесью замерзших углекислоты, аммиака и пыли. Эту модель подтверждают как астрономические наблюдения, так и прямые измерения с космических аппаратов вблизи ядер комет Галлея и Джакобини – Циннера в 1985–1986.

Когда комета приближается к Солнцу ее ядро нагревается, и льды сублимируются, т.е. испаряются без плавления. Образовавшийся газ разлетается во все стороны от ядра, унося с собой пылинки и создавая кому. Разрушающиеся под действием солнечного света молекулы воды образуют вокруг ядра кометы огромную водородную корону. Помимо солнечного притяжения на разреженное вещество кометы действуют и отталкивающие силы, благодаря которым образуется хвост. На нейтральные молекулы, атомы и пылинки действует давление солнечного света, а на ионизованные молекулы и атомы сильнее влияет давление солнечного ветра.

Поведение частиц, формирующих хвост, стало значительно понятнее после прямого исследования комет в 1985–1986. Плазменный хвост, состоящий из заряженных частиц, имеет сложную магнитную структуру с двумя областями различной полярности. На обращенной к Солнцу стороне комы формируется лобовая ударная волна, проявляющая высокую плазменную активность.

Хотя в хвосте и коме заключено менее одной миллионной доли массы кометы, 99,9% света исходит именно из этих газовых образований, и только 0,1% – от ядра. Дело в том, что ядро очень компактно и к тому же имеет низкий коэффициент отражения (альбедо).

Иногда кометы разрушаются при сближении с планетами. 24 марта 1993 на обсерватории Маунт-Паломар в Калифорнии астрономы К. и Ю.Шумейкеры совместно с Д.Леви открыли недалеко от Юпитера комету с уже разрушенным ядром. Вычисления показали, что 9 июля 1992 комета Шумейкеров – Леви-9 (это уже девятая открытая ими комета) прошла вблизи Юпитера на расстоянии половины радиуса планеты от ее поверхности и была разорвана его притяжением более чем на 20 частей. До разрушения радиус ее ядра составлял ок. 20 км.

Растянувшись в цепочку, осколки кометы удалились от Юпитера по вытянутой орбите, а затем в июле 1994 вновь приблизились к нему и столкнулись с облачной поверхностью Юпитера.

Происхождение.

Ядра комет – это остатки первичного вещества Солнечной системы, составлявшего протопланетный диск. Поэтому их изучение помогает восстановить картину формирования планет, включая Землю. В принципе некоторые кометы могли бы приходить к нам из межзвездного пространства, но пока ни одна такая комета надежно не выявлена.

Газовый состав.

В табл. 1 перечислены основные газовые составляющие комет в порядке убывания их содержания. Движение газа в хвостах комет показывает, что на него сильно влияют негравитационные силы. Свечение газа возбуждается солнечным излучением.

ОРБИТЫ И КЛАССИФИКАЦИЯ

Чтобы лучше понять этот раздел, советуем познакомиться со статьями:НЕБЕСНАЯ МЕХАНИКА; КОНИЧЕСКИЕ СЕЧЕНИЯ; ОРБИТА; СОЛНЕЧНАЯ СИСТЕМА.

Орбита и скорость.

Движение ядра кометы полностью определяется притяжением Солнца. Форма орбиты кометы, как и любого другого тела в Солнечной системе, зависит от ее скорости и расстояния до Солнца. Средняя скорость тела обратно пропорциональна квадратному корню из его среднего расстояния до Солнца (a ). Если скорость всегда перпендикулярна радиусу-вектору, направленному от Солнца к телу, то орбита круговая, а скорость называют круговой скоростью (v c ) на расстоянии a . Скорость ухода из гравитационного поля Солнца по параболической орбите (v p ) в раз больше круговой скорости на этом расстоянии. Если скорость кометы меньше v p , то она движется вокруг Солнца по эллиптической орбите и никогда не покидает Солнечной системы. Но если скорость превосходит v p , то комета один раз проходит мимо Солнца и навсегда покидает его, двигаясь по гиперболической орбите.

На рисунке показаны эллиптические орбиты двух комет, а также почти круговые орбиты планет и параболическая орбита. На расстоянии, которое отделяет Землю от Солнца, круговая скорость равна 29,8 км/с, а параболическая – 42,2 км/с. Вблизи Земли скорость кометы Энке равна 37,1 км/с, а скорость кометы Галлея – 41,6 км/с; именно поэтому комета Галлея уходит значительно дальше от Солнца, чем комета Энке.

Классификация кометных орбит.

Орбиты у большинства комет эллиптические, поэтому они принадлежат Солнечной системе. Правда, у многих комет это очень вытянутые эллипсы, близкие к параболе; по ним кометы уходят от Солнца очень далеко и надолго. Принято делить эллиптические орбиты комет на два основных типа: короткопериодические и долгопериодические (почти параболические). Пограничным считается орбитальный период в 200 лет.

РАСПРЕДЕЛЕНИЕ В ПРОСТРАНСТВЕ И ПРОИСХОЖДЕНИЕ

Почти параболические кометы.

К этому классу относятся многие кометы. Поскольку их периоды обращения составляют миллионы лет, в течение века в окрестности Солнца появляется лишь одна десятитысячная их часть. В 20 в. наблюдалось ок. 250 таких комет; следовательно, всего их миллионы. К тому же далеко не все кометы приближаются к Солнцу настолько, чтобы стать видимыми: если перигелий (ближайшая к Солнцу точка) орбиты кометы лежит за орбитой Юпитера, то заметить ее практически невозможно.

Учитывая это, в 1950 Ян Оорт предположил, что пространство вокруг Солнца на расстоянии 20–100 тыс. а.е. (астрономических единиц: 1 а.е. = 150 млн. км, расстояние от Земли до Солнца) заполнено ядрами комет, численность которых оценивается в 10 12 , а полная масса – в 1–100 масс Земли. Внешняя граница «кометного облака» Оорта определяется тем, что на этом расстоянии от Солнца на движение комет существенно влияет притяжение соседних звезд и других массивных объектов (см . ниже ). Звезды перемещаются относительно Солнца, их возмущающее влияние на кометы изменяется, и это приводит к эволюции кометных орбит. Так, случайно комета может оказаться на орбите, проходящей вблизи Солнца, но на следующем обороте ее орбита немного изменится, и комета пройдет вдали от Солнца. Однако вместо нее из облака Оорта в окрестность Солнца будут постоянно попадать «новые» кометы.

Короткопериодические кометы.

При прохождении кометы вблизи Солнца ее ядро нагревается, и льды испаряются, образуя газовые кому и хвост. После нескольких сотен или тысяч таких пролетов в ядре не остается легкоплавких веществ, и оно перестает быть видимым. Для регулярно сближающихся с Солнцем короткопериодических комет это означает, что менее чем за миллион лет их популяция должна стать невидимой. Но мы их наблюдаем, следовательно, постоянно поступает пополнение из «свежих» комет.

Пополнение короткопериодических комет происходит в результате их «захвата» планетами, главным образом Юпитером. Ранее считалось, что захватываются кометы из числа долгопериодических, приходящих из облака Оорта, но теперь полагают, что их источником служит кометный диск, называемый «внутренним облаком Оорта». В принципе представление об облаке Оорта не изменилось, однако расчеты показали, что приливное влияние Галактики и воздействие массивных облаков межзвездного газа должны довольно быстро его разрушать. Необходим источник его пополнения. Таким источником теперь считают внутреннее облако Оорта, значительно более устойчивое к приливному влиянию и содержащее на порядок больше комет, чем предсказанное Оортом внешнее облако. После каждого сближения Солнечной системы с массивным межзвездным облаком кометы из внешнего облака Оорта разлетаются в межзвездное пространство, а им на смену приходят кометы из внутреннего облака.

Переход кометы с почти параболической орбиты на короткопериодическую происходит в том случае, если она догоняет планету сзади. Обычно для захвата кометы на новую орбиту требуется несколько ее проходов через планетную систему. Результирующая орбита кометы, как правило, имеет небольшое наклонение и большой эксцентриситет. Комета движется по ней в прямом направлении, и афелий ее орбиты (наиболее удаленная от Солнца точка) лежит вблизи орбиты захватившей ее планеты. Эти теоретические соображения полностью подтверждаются статистикой кометных орбит.

Негравитационные силы.

Газообразные продукты сублимации оказывают реактивное давление на ядро кометы (подобное отдаче ружья при выстреле), которое приводит к эволюции орбиты. Наиболее активный отток газа происходит с нагретой «послеполуденной» стороны ядра. Поэтому направление силы давления на ядро не совпадает с направлением солнечных лучей и солнечного тяготения. Если осевое вращение ядра и его орбитальное обращение происходят в одном направлении, то давление газа в целом ускоряет движение ядра, приводя к увеличению орбиты. Если же вращение и обращение происходят в противоположных направлениях, то движение кометы тормозится, и орбита сокращается. Если такая комета первоначально была захвачена Юпитером, то через некоторое время ее орбита целиком оказывается в области внутренних планет. Вероятно, именно это случилось с кометой Энке.

Кометы, задевающие Солнце.

Особую группу короткопериодических комет составляют кометы, «задевающие» Солнце. Вероятно, они образовались тысячелетия назад в результате приливного разрушения крупного, не менее 100 км в диаметре, ядра. После первого катастрофического сближения с Солнцем фрагменты ядра совершили ок. 150 оборотов, продолжая распадаться на части. Двенадцать членов этого семейства комет Крейца наблюдались между 1843 и 1984. Возможно, их происхождение связано с большой кометой, которую видел Аристотель в 371 до н.э.

Комета Галлея.

Это самая знаменитая из всех комет. Она наблюдалась 30 раз с 239 до н.э. Названа в честь Э.Галлея, который после появления кометы в 1682 рассчитал ее орбиту и предсказал ее возвращение в 1758. Орбитальный период кометы Галлея – 76 лет; последний раз она появилась в 1986 и в следующий раз будет наблюдаться в 2061. В 1986 ее изучали с близкого расстояния 5 межпланетных зондов – два японских («Сакигаке» и «Суйсей»), два советских («Вега-1» и «Вега-2») и один европейский («Джотто»). Оказалось, что ядро кометы имеет картофелеобразную форму длиной ок. 15 км и шириной ок. 8 км, а его поверхность «чернее угля».Возможно, оно покрыто слоем органических соединений, например полимеризованного формальдегида. Количество пыли вблизи ядра оказалось значительно выше ожидаемого.

Комета Энке.

Эта тусклая комета была первой включена в семейство комет Юпитера. Ее период 3,29 года – наиболее короткий среди комет. Орбиту впервые вычислил в 1819 немецкий астроном И.Энке (1791–1865), отождествивший ее с кометами, наблюдавшимися в 1786, 1795 и 1805. Комета Энке ответственна за метеорный поток Тауриды, наблюдающийся ежегодно в октябре и ноябре.

Комета Джакобини – Циннера.

Эту комету открыл М.Джакобини в 1900 и переоткрыл Э.Циннер в 1913. Ее период 6,59 лет. Именно с ней 11 сентября 1985 впервые сблизился космический зонд «International Cometary Explorer», который прошел через хвост кометы на расстоянии 7800 км от ядра, благодаря чему были получены данные о плазменной компоненте хвоста. С этой кометой связан метеорный поток Джакобиниды (Дракониды).

ФИЗИКА КОМЕТ

Ядро.

Все проявления кометы так или иначе связаны с ядром. Уиппл предположил, что ядро кометы является сплошным телом, состоящим в основном из водяного льда с частицами пыли. Такая модель «грязного снежка» легко объясняет многократные пролеты комет вблизи Солнца: при каждом пролете испаряется тонкий поверхностный слой (0,1–1% полной массы) и сохраняется внутренняя часть ядра. Возможно, ядро является конгломератом нескольких «кометезималей», каждая не более километра в диаметре. Такая структура могла бы объяснить распад ядер на части, как это наблюдалось у кометы Биелы в1845 или у кометы Веста в 1976.

Блеск.

Наблюдаемый блеск освещенного Солнцем небесного тела с неизменной поверхностью меняется обратно пропорционально квадратам его расстояний от наблюдателя и от Солнца. Однако солнечный свет рассеивается в основном газопылевой оболочкой кометы, эффективная площадь которой зависит от скорости сублимации льда, а та, в свою очередь, – от теплового потока, падающего на ядро, который сам изменяется обратно пропорционально квадрату расстояния до Солнца. Поэтому блеск кометы должен меняться обратно пропорционально четвертой степени расстояния до Солнца, что и подтверждают наблюдения.

Размер ядра.

Размер ядра кометы можно оценить из наблюдений в то время, когда оно далеко от Солнца и не окутано газопылевой оболочкой. В этом случае свет отражается только твердой поверхностью ядра, и его видимый блеск зависит от площади сечения и коэффициента отражения (альбедо). У ядра кометы Галлея альбедо оказалось очень низким – ок. 3%. Если это характерно и для других ядер, то диаметры большинства из них лежат в диапазоне от 0,5 до 25 км.

Сублимация.

Переход вещества из твердого состояния в газообразное важен для физики комет. Измерения яркости и спектров излучения комет показали, что плавление основных льдов начинается на расстоянии 2,5–3,0 а.е., как должно быть, если лед в основном водяной. Это подтвердилось при изучении комет Галлея и Джакобини – Циннера. Газы, наблюдающиеся первыми при сближении кометы с Солнцем (CN, C 2), вероятно, растворены в водяном льде и образуют газовые гидраты (клатраты). Каким образом этот «составной» лед будет сублимироваться, в значительной степени зависит от термодинамических свойств водяного льда. Сублимация пыле-ледяной смеси происходит в несколько этапов. Потоки газа и подхваченные ими мелкие и пушистые пылинки покидают ядро, поскольку притяжение у его поверхности крайне слабое. Но плотные или скрепленные между собой тяжелые пылинки газовый поток не уносит, и формируется пылевая кора. Затем солнечные лучи нагревают пылевой слой, тепло проходит внутрь, лед сублимируется, и газовые потоки прорываются, ломая пылевую кору. Эти эффекты проявились при наблюдении кометы Галлея в 1986: сублимация и отток газа происходили лишь в нескольких областях ядра кометы, освещенных Солнцем. Вероятно, в этих областях обнажился лед, тогда как остальная поверхность была закрыта корой. Вырвавшиеся на свободу газ и пыль формируют наблюдаемые структуры вокруг ядра кометы.

Кома.

Пылинки и газ из нейтральных молекул (табл. 1) образуют почти сферическую кому кометы. Обычно кома тянется от 100 тыс. до 1 млн. км от ядра. Давление света может деформировать кому, вытянув ее в антисолнечном направлении.

Водородная корона.

Поскольку льды ядра в основном водяные, то и кома в основном содержит молекулы H 2 O. Фотодиссоциация разрушает H 2 O на H и OH, а затем OH – на O и H. Быстрые атомы водорода улетают далеко от ядра прежде чем оказываются ионизованными, и образуют корону, видимый размер которой часто превосходит солнечный диск.

Хвост и сопутствующие явления.

Хвост кометы может состоять из молекулярной плазмы или пыли. Некоторые кометы имеют хвосты обоих типов.

Пылевой хвост обычно однородный и тянется на миллионы и десятки миллионов километров. Он образован пылинками, отброшенными давлением солнечного света от ядра в антисолнечном направлении, и имеет желтоватый цвет, поскольку пылинки просто рассеивают солнечный свет. Структуры пылевого хвоста могут объясняться неравномерным извержением пыли из ядра или разрушением пылинок.

Плазменный хвост в десятки и даже сотни миллионов километров длиной – это видимое проявление сложного взаимодействия между кометой и солнечным ветром. Некоторые покинувшие ядро молекулы ионизуются солнечным излучением, образуя молекулярные ионы (H 2 O + , OH + , CO + , CO 2 +) и электроны. Эта плазма препятствует движению солнечного ветра, пронизанного магнитным полем. Наталкиваясь на комету, силовые линии поля оборачиваются вокруг нее, принимая форму шпильки для волос и образуя две области противоположной полярности. Молекулярные ионы захватываются в эту магнитную структуру и образуют в центральной, наиболее плотной ее части видимый плазменный хвост, имеющий голубой цвет из-за спектральных полос CO + . Роль солнечного ветра в формировании плазменных хвостов установили Л.Бирман и Х.Альвен в 1950-х годах. Их расчеты подтвердили измерения с космических аппаратов, пролетевших через хвосты комет Джакобини – Циннера и Галлея в 1985 и 1986.

В плазменном хвосте происходят и другие явления взаимодействия с солнечным ветром, налетающим на комету со скоростью ок. 400 км/с и образующим перед ней ударную волну, в которой уплотняется вещество ветра и головы кометы. Существенную роль играет процесс «захвата»; суть его в том, что нейтральные молекулы кометы свободно проникают в поток солнечного ветра, но сразу после ионизации начинают активно взаимодействовать с магнитным полем и ускоряются до значительных энергий. Правда, иногда наблюдаются весьма энергичные молекулярные ионы, необъяснимые с точки зрения указанного механизма. Процесс захвата возбуждает также плазменные волны в гигантском объеме пространства вокруг ядра. Наблюдение этих явлений имеет фундаментальный интерес для физики плазмы.

Замечательное зрелище представляет «обрыв хвоста». Как известно, в нормальном состоянии плазменный хвост связан с головой кометы магнитным полем. Однако нередко хвост отрывается от головы и отстает, а на его месте образуется новый. Это случается, когда комета проходит через границу областей солнечного ветра с противоположно направленным магнитным полем. В этот момент магнитная структура хвоста перестраивается, что выглядит как обрыв и формирование нового хвоста. Сложная топология магнитного поля приводит к ускорению заряженных частиц; возможно, этим объясняется появление упомянутых выше быстрых ионов.

Столкновения в Солнечной системе.

Из наблюдаемого количества и орбитальных параметров комет Э.Эпик вычислил вероятность столкновения с ядрами комет различного размера (табл. 2). В среднем 1 раз за 1,5 млрд. лет Земля имеет шанс столкнуться с ядром диаметром 17 км, а это может полностью уничтожить жизнь на территории, равной площади Северной Америки. За 4,5 млрд. лет истории Земли такое могло случаться неоднократно. Гораздо чаще происходят катастрофы меньшего масштаба: в 1908 над Сибирью, вероятно, вошло в атмосферу и взорвалось ядро небольшой кометы, вызвав полегание леса на большой территории.

В отличие от планет кометы движутся по сильно вытянутым орбитам и поэтому бывают видны только в короткие периоды сближений с Солнцем.

Главная составная часть любой кометы - это ее ядро .

Согласно гипотезе известного американского исследователя комет Фреда Лоуренса Уиппла, кометное ядро представляет собой ледяную глыбу, состоящую из смеси замерзшей воды и замороженных газов с вкраплениями тугоплавких каменистых и металлических частиц . Образно говоря, оно похоже на "загрязненный айсберг".

Представим себе, что мы наблюдаем только что открытую комету, которая находится где-то в окрестностях орбиты Юпитера. Увидав в телескоп бледное туманное пятнышко, похожее на шарообразную туманность (такими непривлекательными представляются наблюдателю далекие кометы), мы, возможно, будем поначалу разочарованы. С приближением кометы к Солнцу поток солнечной радиации возрастает. Кометные "льды" начинают интенсивно испаряться. Вокруг ядра образуется обширная светящаяся газовая оболочка - кома. Вместе с ядром она составляет голову кометы.

Кометы (от греческого kometes, - длинноволосый), тела Солнечной системы, движутся по сильно вытянутым орбитам, на значительных расстояниях от Солнца выглядят как слабо светящиеся пятнышки овальной формы, а с приближением к Солнцу у них появляются «голова» и «хвост». Центральная часть головы называется ядром. Диаметр ядра 0,5-20 км, масса 10 11 -10 19 кг, ядро представляет собой ледянистое тело - конгломерат замерзших газов и частиц пыли. Хвост кометы состоит из улетучивающихся из ядра под действием солнечных лучей молекул (ионов) газов и частиц пыли, длина хвоста может достигать десятков млн. км. Наиболее известные периодические кометы - Галлея (период Р=76 лет), Энке (Р=3,3 года), Швассмана - Вахмана (орбита кометы лежит между орбитами Юпитера и Сатурна).

Дальнейшее сближение кометы с Солнцем приводит к тому, что ее голова становится овальной, затем удлиняется и из нее развивается хвост . Именно из-за хвостов, напоминающих порой распущенные волосы, эти небесные тела стали называть кометами. Кометные хвосты обычно направлены в сторону, противоположную Солнцу. Последнее обстоятельство указывает на существование особой силы, исходящей от лучезарного светила и отталкивающей кометное вещество. В начале XX века после опытов выдающегося русского физика П. Н. Лебедева (1866-1912) стало ясно, что это давление солнечного света на молекулы газов и пылинки, выделяющиеся из кометного ядра.

Подсчитано, что на расстоянии от Солнца, равном среднему радиусу земной орбиты (1 а. е.), пылинка размером в 1/5 микрона будет находиться в равновесии, то есть сила притяжения такой пылинки к Солнцу будет уравновешиваться давлением световых лучей. А для частиц меньших размеров лучевое давление преобладает над силой гравитации, и они будут удаляться от Солнца.

В виде исключения встречаются кометы, имеющие помимо хвоста, направленного от Солнца, еще один прямой хвост, обращенный к светилу. Такой необычный хвост наблюдал в 1835 году немецкий астроном Фридрих Бессель (1784-1846) у кометы Галлея. Но наиболее выразительный аномальный хвост был у кометы Когоутека . На него 29 декабря 1973 года обратили внимание американские астронавты, совершавшие полет на орбитальной станции "Скайлэб".

Возникновение аномальных хвостов связано с выбросом из кометных ядер крупных пылевых частиц - размером от 0,1 мм и более значительных. Основное действие на такие частицы оказывает уже не световое давление, а сила гравитации. Устремляясь под ее влиянием к Солнцу, они образуют у кометы необычный, аномальный хвост.

По оценкам ученых, массы кометных ядер могут быть от нескольких тонн у микро-комет до миллиардов, а возможно, и многих триллионов тонн у комет-гигантов. Но чем короче период обращения кометы и, следовательно, чем чаще комета огибает Солнце, тем быстрее подтаивает и "худеет" ее ядро. Фред Л. Уиппл вычислил, что за одно прохождение около Солнца комета может терять путем испарения сотни миллионов тонн летучих веществ и пыли.

В 1908 году наблюдалась комета Морхауза. В ее хвосте были обнаружены частицы вещества, двигавшиеся с очень большими ускорениями. Расчеты показали, что на них действуют силы отталкивания, в тысячу раз превышающие силу притяжения Солнца.

Объяснить это одним световым давлением было невозможно. Пришлось искать другую причину. И такая причина нашлась: виновником оказался солнечный ветер - струи плазмы, непрерывно истекающие из солнечной короны в межпланетное пространство. Открыт этот ветер был уже в наше время с помощью космических аппаратов, но первыми засвидетельствовали его кометы.

Стремительные потоки корпускул солнечного вещества, наталкиваясь на газы и пары в голове кометы, ионизуют их - создают плазму - и уносят кометную плазму на больших скоростях прочь от Солнца. И чем сильнее дует ветер, тем прямее и длиннее у кометы хвост. Но если пылевой хвост светит отраженным солнечным светом, то плазменный флуоресцирует, испускает собственные лучи под воздействием ультрафиолетовой радиации центрального светила.

Для проверки кометных гипотез, и прежде всего гипотезы о ледяном ядре, в Ленинградском физико-техническом институте имени академика А. Ф. Иоффе были проведены опыты с искусственными кометными ядрами. Интересные результаты по моделированию кометных явлений были получены физиками Евгением Алексеевичем Каймаковым и Виктором Ивановичем Шарковым. В вакуумной камере, где создавались условия, близкие к условиям космического пространства, они изучали поведение искусственных кометных ядер. В качестве "ядер" использовался чистый и запыленный лед различного химического состава. Оказалось, что при облучении такого ядра интенсивным светом, похожим на солнечный, на его поверхности может образоваться матрица, или пылевая корочка. Она обладает высокими теплоизоляционными свойствами, что мешает проникновению солнечного тепла в глубь ядра и сублимации кометного вещества - превращению льдов в пар, минуя жидкое состояние.

В детстве любила наблюдать за звездным небом. Помню, однажды увидела на небе что-то яркое. Оно было похожее на падающую звезду. Правда, это небесное тело было большое и яркое. Друзья мне тогда сказали, что это комета . Сейчас не берусь сказать о том, что это было. Возможно и комета, потому что иногда их можно наблюдать с Земли.

Каково строение кометы и её ядра

Люди с давних времен интересуются небесными телами. Не зря же был создан телескоп. Комета всегда привлекала людей своими размерами и ярким цветом.

Слово комета обозначает «с длинными волосами» . Если ее увидеть ее на небе, то она похожа на голову с длинными волосами. Мы с Земли видим комету, как «голову» и «хвост» .

Комета – это небесное тело, которое движется вокруг Солнца и имеет длинную орбиту .

Строение кометы:

  • ядро – это « голова» кометы. Она состоит из твердых частей. Вся масса кометы сосредоточена именно в ядре. Ученый доказали, что ядро состоит изо льда и замороженных космических газов. Так же в нем есть мелкие элементы каменистых и металлических частей;
  • кома – это то, что находится вокруг ядра. Оболочка состоит из газов и частиц пыли;
  • хвост – бывает только у тех комет, которые находятся сравнительно рядом с Солнцем. Это полоса образуется благодаря деятельности солнечного ветра.

В Солнечной системе находятся тысячи комет, но мы можем видеть только те, которые находятся ближе к Солнцу. Интересно, что:

  • первый раз упомянули комету Галея еще в 240 г до н.э.;
  • есть некая теория, которая гласит, что жизнь на Землю пришла с комет ;
  • хвосты кометы имеют огромную длину. Например, хвост кометы Хиякутаке в длину составляет 580 млн км ;
  • у всех комет есть своя атмосфера . Она отличается от земной;
  • в начале XX века на небе было видно комету Галея. и на этом решили подзаработать бизнесмены того времени. Они продавали зонты и противогазы, чтобы защититься от кометы.

Комета - это таинственное небесное светило. Ученые пытаются разгадать множество их загадок, но это - очень сложно. Теперь Вы знаете, что комета состоит из ядра, комы и хвоста. Ядро - это ледяная глыба, которая составляет 90 % от всего веса кометы .

> Ядро кометы

Ядро кометы – в каком состоянии находится ядро: из чего состоит вещество, строение кометы, сравнение ядер комет, размер, происхождение, связь с облаком Оорта.

Давайте разберемся, в каком состоянии находится ядро кометы и из чего состоит. Ядром кометы именуют целостную центральную кометную часть, которую обычно называют грязным снежком или ледяным комом. Состав ядра кометы включает скалистые обломки, пыль и замороженные газы. При повышении температуры происходит газовая сублимация и формирование атмосферного слоя вокруг ядра – кома. На нее начинают влиять солнечное радиационное давление и ветер, из-за чего вытягивается длинный хвост. Показатель альбедо для типичного хвоста составляет 0.04 (темнее угля).

Миссии Розетты и Филы показали, что ядро кометы 67Р/Чурюмова-Герасименко не располагает магнитным полем, а значит магнетизм мог и не повлиять на раннее формирование планетезималей. Спектрограф также вычислил, что электроны в черте 1 км отвечают за процесс деградации воды и молекул углекислого газа, высвобожденных из ядра в кому.

В 2015 году исследователи сообщили, что спущенный зонд Филы вывил минимум 16 органических соединений, где 4 впервые замечены на кометах.

Происхождение ядер комет

Полагают, что кометы (или их предшественники) появились в Солнечной системе за миллионы лет до планетарного формирования. Компьютерные модели показывают, что главные структурные особенности ядер могут объясняться небольшой скоростью аккреции слабых кометезималей. Сейчас большинство склоняются в гипотезе туманности, где кометы выступают остатками от изначальных планетарных строительных блоков.

Кометы могут прибывать из облака Оорта и рассеянного диска.

Размер ядер комет

Большая часть кометных ядер простирается на 16 км. Среди крупнейших комет стоит вспомнить C/2002 VQ94 (100 км), Хейла-Боппа (60 км), 29P (30.8 км), 109P/Свифта-Туттля (26 км) и 28P (21.4 км).

Ядро кометы Галлея (15 х 8 х 8 км) представлено равным соотношением льда и пыли.

В 2001 году Deep Space 1 осматривал ядро кометы Борелли (8 х 4 х 4 км) и выявил, что она достигает половины размера кометного ядра Галлея. Оно также напоминает картофелину и покрыто темным материалом.

Ядро Хейла-Боппа оценили в 20-60 км в диаметре. Она казалась яркой и показывалась без использования инструментов. Диаметр ядра P/2007 R5 достигает лишь 100-200 м.

Небольшие кентавры также вытягиваются на 250-300 км, среди которых выделяют три наиболее масштабных: Чарикло (258 км), Хирон (230 км) и 1995 SN55 (300 км).

Средняя плотность комет – 0.6 г/см 3 .

Состав ядер комет

Примерно 80% ядра кометы Галлея занято водяным льдом и 15% – замороженный монооксид углерода. Большая часть остатка – углекислый газ, аммиак и метан в замороженном состоянии. Исследователи думают, что остальные кометы по химическому составу напоминают комету Галлея, ядро которой также темное. Возможно, на поверхностном слое присутствует кора пыли и камней.

Анализ водяного пара Чурюмова-Герасименко показал существенное различие с земным. Соотношение дейтерия к водороду втрое выше, чем в земной воде. Поэтому вряд ли вода прибыла к нам с подобных комет. Можете рассмотреть, как выглядит фото ядра различных комет.

Изображение ядер некоторых комет

Хартли

*Нажмите на изображение, чтобы увеличить изображение

Структура комет

Некоторые из водяных паров в комете 67Р способны выйти из ядра, но примерно 80% из них реконструируются в слоях под поверхностью. А значит, тонкие и богатые на лед слои могли сформироваться из-за кометной активности и эволюции.

Зонд Филы показал, что пылевой слой способен достигать 20 см, а под ним скрываются твердый лед или же смесь льда и пылевых частиц. Прочность вырастает с приближением к ядру.

Расщепление комет

Процесс кометного расщепления показал, что ядра некоторых комет могут быть хрупкими. К примеру, это произошло в 1846 году с 3D/Биэлы, в 1992 году – Шумейкер-Леви 9, а также в 1995-2006 гг. – 73Р. Хотя об этом процессе сообщал еще Эфорус в 372-373 гг. до н.э.

Кометы 42Р и 53Р кажутся осколками раннего крупного объекта. Детальное изучение показало, что обе кометы приближались к Юпитеру в 1850 году и до этого момента их орбиты практически совпадали.

Альбедо ядер комет

Целостные ядра выступают одними из темнейших объектов в нашей системе. Джотто выявил, что ядро Галлея отражает лишь 4% лучей, а Deep Space 1 заметил, что комета Борелли отбивает только 2.5-3% поступающего света. Есть мнение, что материалом для темного поверхностного слоя выступают сложные органические соединения. Нагрев отключает летучие соединения, оставляя темные материалы.

Примерно 6% околоземных астероидов считаются ядрами погибших комет, лишенных дегазации. Среди таких объектов числятся 14827 Гипнос и 3552 Дон Кихот.

Комета D/1993 F2 (Шумейкеров - Леви) была разорвана гравитацией Юпитера, после чего фрагменты упали на его поверхность

Обнаружение и изучение ядер комет

Первой приближенной миссией к ядру стал полет зонда Джотто. Впервые кораблю удалось подойти на удаленность в 596 км. Исследователи сумели рассмотреть струи, низкое поверхностное альбедо и присутствие органических соединений.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!