Мода и стиль. Красота и здоровье. Дом. Он и ты

Какая температура в стратосфере. Озоновый слой Земли

Все, кто летал на самолете, привыкли к сообщению такого рода: «наш полет проходит на высоте 10 000 м, температура за бортом - 50 °С». Кажется, ничего особенного. Чем дальше от нагретой Солнцем поверхности Земли, тем холоднее. Многие думают, что понижение температуры с высотой идет непрерывно и постепенно температура падает, приближаясь к температуре космоса. Между прочем, так думали ученые вплоть до конца 19 века.

Разберемся подробнее с распределением температуры воздуха над Землей. Атмосферу подразделяют на несколько слоев, которые и отражают в первую очередь характер изменения температуры.

Нижний слой атмосферы называется тропосферой , что означает „сфера поворота". Все перемены погоды и климата являются результатом физических процессов, происходящих именно в этом слое. Верхняя граница этого слоя располагается там, где уменьшение температуры с высотой сменяется ее возрастанием,— примерно на высоте 15—16 км над экватором и 7—8 км над полюсами. Как и сама Земля, атмосфера под влиянием вращения нашей планеты тоже несколько сплющена над полюсами и разбухает над экватором. Однако этот эффект выражен в атмосфере значительно сильнее, чем в твердой оболочке Земли. В направлении от поверхности Земли к верхней границе тропосферы температура воздуха понижается. Над экватором минимальная температура воздуха составляет около —62°С, а над полюсами около —45°С. В умеренных широтах более 75% массы атмосферы находится в тропосфере. В тропиках же в пределах тропосферы находится около 90% массы атмосферы.

В 1899 г. в вертикальном профиле температуры на некоторой высоте был обнаружен ее минимум, а затем температура незначительно повышалась. Начало этого повышения означает переход к следующему слою атмосферы — к стратосфере , что означает „сфера слоя". Термин стратосфера означает и отражает прежнее представление о единственности слоя, лежащего выше тропосферы. Стратосфера простирается до высоты около 50 км над земной поверхностью. Особенностью ее является, в частности, резкое повышение температуры воздуха. Это повышение температуры объясняют реакцией образования озона — одной из главных химических реакций, происходящих в атмосфере.

Основная масса озона сосредоточена на высотах примерно 25 км, но в целом слой озона представляет собой сильно растянутую по высоте оболочку, охватывающую почти всю стратосферу. Взаимодействие кислорода с ультрафиолетовыми лучами — один из благоприятных процессов в земной атмосфере, способствующих поддержанию жизни на Земле. Поглощение озоном этой энергии препятствует излишнему поступлению ее на земную поверхность, где создается именно такой уровень энергии, который пригоден для существования земных форм жизни. Озоносфера поглощает часть лучистой энергии, проходщей через атмосферу. В результате этого в озоносфере устанавливается вертикальный градиент температуры воздуха примерно 0,62°С на 100 м, т. е, температура повышается с высотой вплоть до верхнего предела стратосферы — стратопаузы (50 км), достигая, по некоторым данным, 0 °С.

На высотах от 50 до 80 км располагается слой атмосферы, называемый мезосферой . Слово „мезосфера" означает „промежуточная сфера", здесь температура воздуха продолжает понижаться с высотой. Выше мезосферы, в слое, называемом термосферой , температура снова растет с высотой примерно до 1000°С, а затем очень быстро падает до —96°С. Однако падает не беспредельно, потом температура снова увеличивается.

Термосфера является первым слоем ионосферы . В отличие от упомянутых ранее слоев, ионосфера выделена не по температурному признаку. Ионосфера является областью, имеющей электрическую природу, благодаря которой становятся возможными многие виды радиосвязи. Ионосферу делят на несколько слоев, обозначая их буквами D, Е, F1 и F2 Эти слои имеют и особые названия. Разделение на слои вызвано несколькими причинами, среди которых самая важная—неодинаковое влияние слоев на прохождение радиоволн. Самый нижний слой, D, в основном поглощает радиоволны и тем самым препятствует дальнейшему их распространению. Лучше всего изученный слой Е расположен на высоте примерно 100 км над земной поверхностью. Его называют также слоем Кеннелли — Хевисайда по именам американского и английского ученых, которые одновременно и независимо друг от друга обнаружили его. Слой Е, подобно гигантскому зеркалу, отражает радиоволны. Благодаря этому слою длинные радиоволны проходят более далекие расстояния, чем следовало бы ожидать, если бы они распространялись только прямолинейно, не отражаясь от слоя Е. Аналогичные свойства имеет и слой F. Его называют также слоем Эпплтона. Вместе со слоем Кеннелли—Хевисайда он отражаем радиоволны к наземным радиостанциями Такое отражение может происходить под различными углами. Слой Эпплтона расположен на высоте около 240 км.

Самая внешняя область атмосферы, второй слой ионосферы, часто называется экзосферой . Этот термин указывает на существование окраины космоса вблизи Земли. Определить, где именно кончается атмосфера и начинается космос, трудно, поскольку с высотой плотность атмосферных газов уменьшается постепенно и сама атмосфера плавно превращается почти в вакуум, в котором встречаются лишь отдельные молекулы. Уже на высоте примерно 320 км плотность атмосферы настолько мала, что молекулы, не сталкиваясь друг с другом, могут проходить путь более 1 км. Самая внешняя часть атмосферы служит как бы ее верхней границей, которая располагается на высотах от 480 до 960 км.

Подробнее о процессах а атмосфере можно узнать на сайте «Земной климат»

Земная атмосфера являет собой газовою оболочку планеты. Нижняя граница атмосферы проходит возле поверхности земли (гидросфера и земная кора), а верхняя граница является область соприкасающеюся космического пространства (122 км). В себе атмосфера содержит много разных элементов. Основные из них: 78% азот, 20% кислород, 1% аргон, углекислый газ, галий неона, водород и тд. Интересные факты можно посмотреть в конце статьи или перейдя по .

Атмосфера имеет четко выраженные слои воздуха. Слои воздуха отличаются между собой температурой, разностью газов и их плотностью и . Нужно отметить, что слои стратосфера и тропосфера защищают Землю от солнечной радиации. В высших слоях живой организм может получить смертельную дозу ультрафиолетового солнечного спектра. Для быстрого перехода к нужному слою атмосферы, нажмите на соответствующий слой:

Тропосфера и тропопауза

Тропосфера — температура, давление, высота

Верхняя граница держится на отметке 8 — 10 км примерно. В умеренных широтах 16 — 18 км, а в полярных 10 — 12 км. Тропосфера — это нижний главный слой атмосферы. В этом слое находится более 80% всей массы атмосферного воздуха и близко 90% всей водяной пары. Именно в тропосфере возникают конвекция и турбулентность, образуются , происходят циклоны. Температура понижается с ростом высоты. Градиент: 0,65 °/100 м. Нагретая земля и вода нагревают прилагающий воздух. Нагретый воздух поднимается в верх, охлаждается и образует облака. Температура в верхних границах слоя может достигать — 50/70 °C.

Именно в этом слое происходят изменения климатических погодных условий. В нижнюю границу тропосферы называют приземным , так как он имеет много летучих микроорганизмов и пыли. Скорость ветра увеличивается с увеличением высоты в этом слое.

Тропопауза

Это переходной слой тропосферы к стратосфере. Здесь прекращается зависимость снижения температуры с повышением высоты. Тропопауза — минимальная высота, где вертикальный градиент температуры падает до 0,2°C/100 м. Высота тропопаузы зависит от сильных климатических проявлений, таких как циклоны. Над циклонами высота тропопаузы понижается, а над антициклонами повышается.

Стратосфера и Стратопауза

Высота слоя стратосферы примерно от 11 до 50 км. Присутствует незначительное изменение температуры на высоте 11 — 25 км. На высоте 25 — 40 км наблюдается инверсия температуры, от 56,5 поднимается до 0,8°C. От 40 км до 55 температура держится на отметке 0°C. Эту область называют — Стратопаузой .

В Стратосфере наблюдают воздействие солнечной радиации на молекулы газа, они диссоциируют на атомы. В этом слое нету почти водяного пара. Современные сверхзвуковые коммерческие самолёты летают на высоте до 20 км из-за стабильных полетных условий. Высотные метеозонды поднимаются на высоту 40 км. Здесь присутствуют устойчивые воздушные течения, скорость их достигает 300 км/ч. Также в этом слое сосредоточен озон , слой который поглощает ультрафиолетовые лучи.

Мезосфера и Мезопауза — состав, реакции, температура

Слой мезосферы начинается примерно на высоте 50 км и заканчивается на отметке 80 — 90 км. Температуры понижается с повышением высоты примерно 0,25-0,3°C/100 м. Основным энергетическим действием здесь является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов (имеет 1 или 2 непарных электронная) т.к. они реализуют свечение атмосферы.

Почти все метеоры сгорают в мезосфере. Ученые назвали эту зону — Игноросферой . Эту зону тяжело исследовать, так как аэродинамическая авиация здесь очень плохая из-за плотности воздуха, которая здесь в 1000 раз меньше чем на Земле. А для запуска искусственных спутников плотность еще очень высокая. Исследования проводят с помощью метеорологических ракет, но это извращенность. Мезопауза переходной слой между мезосферой и термосферой. Имеет температуру минимум -90°C.

Линия Кармана

Линию кармана называют границей между атмосферой Земли и космосом. Согласно международной авиационной федерацией (ФАИ) высота этой границы — 100 км. Такое определения дали в честь американского ученого Теодора Фон Кармана. Он определил, что примерно на этой высоте плотность атмосферы настолько мала, что аэродинамическая авиация здесь становится невозможная, так как скорость летательного устройства должна быть большей первой космической скорости . На такой высоте теряет смысл понятие звуковой барьер. Здесь управлять летательным аппаратом можно лишь за счет реактивных сил.

Термосфера и Термопауза

Верхняя граница этого слоя примерно 800 км. Температура растёт примерно до высоты 300 км где достигает порядка 1500 К. Выше температура остается неизменной. В этом слое происходит полярное сияние — происходит в следствии воздействия солнечной радиации на воздуха. Также этот процесс называют ионизацией атмосферного кислорода.

Из-за малой разряженности воздуха полёты выше линии Кармана реализуемы только по баллистических траекториях. Все пилотируемые орбитальные полеты (кроме полетов на Луну) происходят в этом слое атмосферы.

Экзосфера — плотность, температура, высота

Высота экзосферы выше 700 км. Здесь газ сильно разрежён,и происходит процесс диссипации — утечка частиц в межпланетное пространство. Скорость таких частиц может достигать 11,2 км/сек. Рост солнечной активности приводит к расширению толщины этого слоя.

  • Газовая оболочка не улетает в космос из-за земного притяжения. Воздух состоит из частиц, которые имеют свою массу. Из закона тяготения можно вынести то, что каждый объект обладающий массой притягивается к Земли.
  • Закон Буйс-Баллота гласит, что если находиться в Северном полушарии и встать спиной к ветру, то справа будет располагаться зона высокого давления, а слева - низкого. В Южном же полушарии все будет наоборот.

Стратосфера - это слой атмосферы, расположенный между тропосферой и мезосферой. Его нижняя граница находится на высоте около 10км вблизи полюсов. К экватору эта граница постепенно поднимается и на широте 0° располагается на высоте около 18км. Верхняя граница расположена примерно на высоте 50км.

Как и тропосфера, стратосфера имеет переходный слой на верхней границе, который начинается при градиенте температуры ~0°С/100м (градиент и особенности тропосферы описаны были ).

Особенности стратосферы следующие:

  • рост температуры воздуха;
  • уменьшение содержания водяного пара;
  • практически полное отсутствие облачности (следует из второго пункта);
  • повышенное содержание озона (озоновый слой).

В отличие от тропосферы, в стратосфере температура воздуха с высотой растёт . На нижней границе этого слоя температура составляет -55…-70°С, а на верхней – около 0°С. Прогрев воздуха здесь происходит исключительно за счёт поглощения ультрафиолета (УФ) озоном (О 3).

По мере удаления от земной поверхности плотность атмосферы уменьшается, содержание частиц также уменьшается. Это касается и водяного пара. Так как его содержание здесь мало, то облачность практически не формируется. Однако тонкие облака стратосферы (перламутровые) всё же существуют и их можно заметить на закате.




Повышенное содержание озона (О 3) в стратосфере обусловлено воздействием ультрафиолета на кислород (О 2). Стратосфера содержит 90% всего озона , находящегося в атмосфере Земли. Именно здесь располагается тот самый знаменитый озоновый слой . Озон в стратосфере несёт исключительно положительную роль, защищая организмы от губительного влияния ультрафиолетового излучения Солнца.

Стратосфера

Выше тропопаузы до высоты 50 – 60 км расположен слой атмосферы, называемый стратосферой , главной особенностью которой является рост температуры с высотой. В нижней части стратосферы до высоты порядка 25 км температура постоянна или медленно растет с высотой. Стоит отметить, что в зимние месяцы в высоких широтах она даже может слабо падать. Но с высоты 34 – 36 км температура начинает расти быстрее. Это возрастание продолжается до верхней границы стратосферы, именуемой стратопаузой . Здесь стратосфера почти такая же теплая, как и воздух у поверхности Земли.

Возрастание температуры с высотой приводит к большой устойчивости стратосферы: здесь нет упорядоченных (конвективных) вертикальных движений воздуха и его активного перемешивания, что свойственно для тропосферы. Однако очень небольшие по величине вертикальные движения типа медленного оседания или подъема иногда охватывают слои стратосферы, занимающие огромные пространства.

Водяного пара в стратосфере ничтожно мало. Однако на высотах 22 – 24 км в высоких широтах иногда наблюдаются . Днем они не видны, а ночью кажутся светящимися, так как освещаются Солнцем, находящимся под горизонтом. Считается, что эти облака состоят из переохлажденных капель.

Состав воздуха в стратосфере практически такой же, как и в тропосфере, но есть отличие. В стратосфере наблюдается повышенное содержание озона – неустойчивого газа, молекула которого состоит из трех атомов кислорода. Озоновый слой сформировался и поддерживается взаимодействием ультрафиолетового излучения Солнца с молекулами обычного кислорода и служит надежным экраном на пути этого губительного для всего живого излучения. Из-за наличия слоя озона в стратосфере она может быть также названа озоносферой .

…Когда-то обнаруженное в тропосфере падение температуры с высотой ошибочно считалось свойством всей атмосферы, что объяснялось удалением от нагреваемой Солнцем земной поверхности. Но первые же подъемы шаров-зондов с инструментами на борту дали неожиданные данные. Оказалось, что температура понижается примерно до высоты 10 км, после чего она практически не меняется, а затем начинает даже несколько повышаться. Эти данные шли вразрез с установившимися представлениями о вертикальном изменении температуры в атмосфере. Приборы перед запусками шаров-зондов стали проверять более тщательно, практиковались также ночные запуски, исключающие нагрев приборов Солнцем. Однако все новые и новые пуски приносили одни и те же данные о том, что падение температуры с высотой прекращается. В результате пришлось согласиться с тем фактом, что законы, действующие в нижней части атмосферы, перестают работать выше определенной высоты. Таким образом, атмосферу впервые поделили на слои. Тот слой, в котором температура с высотой понижается, назвали тропосферой, а слой атмосферы, в котором температура переставала понижаться с высотой – стратосферой. Учитывая то, что шары-зонды имели значительные ограничения по высоте подъема, они не могли достичь следующего слоя атмосферы – мезосферы , в которой температура снова начинает понижаться по мере подъема. В результате стратосферой стали считать всю верхнюю атмосферу.

Стоит отметить, что переход от тропосферы к стратосфере не происходит резко. Между ними лежит промежуточный слой, толщиной до нескольких километров, в котором прекращается падение температуры с высотой и начинается слой изотермии. Этот слой называется тропопаузой .

Причину роста температуры в стратосфере обнаружили не сразу. Им оказался обнаруженный еще в 1785 году газ, получивший в 1840 году название – озон . В результате поглощения солнечной энергии, происходящей уже в верхней части слоя озона, температура атмосферы на этих высотах повышается, и слой озона является своего рода резервуаром тепла в атмосфере. Содержание озона в нижних слоях атмосферы (до высоты 10 км) ничтожно. А его набольшее содержание приходится на высоты 20 – 25 км. Молекулы озона не встречаются на высотах более 60 км. Данные о содержании озона на высотах получали весьма интересным способом: на шаре-зонде или метеорологической ракете устанавливался спектрограф, регистрирующий спектр Солнца. Известно, что при наблюдениях с поверхности Земли спектр Солнца обрывается в ультрафиолетовой части. Когда стало ясно, что это связано с поглощением озоном солнечного ультрафиолета, логичным методом оценки содержания озона на высотах стали запуски зондов и ракет со спектрографами на борту.

Повышение температуры в стратосфере начинается примерно от 30 км и продолжается до 40 – 50 км, где находится верхняя часть озонного слоя. Несмотря на то, что озона здесь меньше, чем на более низких уровнях, именно эта часть слоя обращена к Солнцу и нагревается сильнее поглощаемыми ею ультрафиолетовыми лучами.

Установленное по результатам зондирования повышение температуры на высоте около 40 – 50 км было подтверждено в 1920 году, когда 9 мая в Москве произошел сильный взрыв артиллерийских складов. Звук от взрыва был хорошо слышен вблизи Москвы – на расстоянии до 60 км, а затем снова на большом расстоянии в пунктах, расположенных кольцом вокруг города. Между этими двумя зонами слышимости имелась «зона молчания» шириной в 100 км, где взрыв совсем не был слышен. Профессор В.И. Виткевич исследовал это явление и пришел к выводу, что такое распределение слышимости звука может наблюдаться при условии его отражения от слоев атмосферы, распложенных на высоте 40 – 50 км. Но при этом температура отражающих слоев должна быть около плюс 40 – 50 градусов.

Мы уже упоминали о важной роли озонового слоя в сохранении жизни на Земле. Но в 1985 году ученые обнародовали сенсационное известие: над Антарктидой обнаружена озоновая дыра диаметром свыше 1000 км! Ежегодно она появлялась здесь в августе, а к декабрю – январю прекращался свое существование. Меньших размеров озоновая дыра была обнаружена и над Арктикой. Стоит отметить, что изменения озонового слоя, его уменьшение, вызвано не только влиянием антропогенных факторов. Существующие естественные изменения волновой активности и динамики стратосферы значительно влияют на вариации озона во времени. Межгодовые вариации общего содержания озона (ОСО) в глобальном масштабе являются индикаторами изменений климата. Например, заметное уменьшение содержания озона в период между 1979 – 1994 гг. над Западной Европой, Восточной Сибирью и востоком США связаны с потеплением климата в этих районах, в увеличение содержания озона в области Лабрадора – с похолоданием в Гренландии и Западной Атлантике.

Существуют также связи между вариациями ОСО в одних географических районах и приземными температурными аномалиями – в других. Например, анализ межгодовых вариаций ОСО в январе и приземной температуры в феврале 1979 – 1994 гг. показал, что для того, чтобы предсказать какая погода (холодная или теплая) будет в феврале в Западной Сибири, нужно смотреть на содержание озона в точке к западу от Англии (50° с.ш., 10° з.д.).

Первые подъемы шаров-зондов до достигавшейся ими предельной высоты опказали, что общий ход температуры выше тропопаузы был достаточно постоянным. Отсюда был сделан вывод о том, что на этих высотах отсутствует (или почти отсутствует) вертикальное перемешивание воздуха. Более поздние высокие радиозондовые подъемы позволили обнаружить значительные сезонные (муссонные) изменения градиента температуры экватор – полюс и связанные с ними изменения режима давления и ветра. Другое важное открытие связано с обнаруженным в стратосфере, прежде всего в зимней стратосфере, значительные внутрисезонные изменения температуры, ветра и содержания озона. Особенно ярко эти внутрисезонные изменения проявляются в так называемых взрывных потеплениях в стратосфере высоких широт.

Первые важные данные о ветрах в нижней стратосфере в ее экваториальной части дало извержение вулкана Кракатао 27 августа 1883г., в результате которого в атмосферу было выброшено огромное количество вулканической пыли. Это обстоятельство позволило получить начальные сведения о некоторых особенностях стратосферы низких широт.

Движение вулканической пыли показало, что в экваториальной зоне не только на уровне моря, но и в нижней стратосфере зональная составляющая ветра направлена с востока на запад, причем скорость этих восточных потоков в нижней стратосфере достигает значительных величин (25 – 50 м/сек). Эти стратосферные восточные ветры получили название ветров Кракатао . Ветры Кракатао огибают весь земной шар в экваториальных (15° с.ш. – 15° ю.ш.) широтах на высотах 25 – 40 км.

В 1909 году экспедицией Ван-Берсона в Центральной Африке впервые были обнаружены западные ветры в тропической стратосфере. Последующие наблюдения показали как наличие восточных ветров Кракатао в тропической стратосфере, так и появление под ними западных ветров Берсона . Западные ветры Берсона также были обнаружены при серии атомных испытаний на Маршалловых островах. Последующие исследования показали, что ветры в нижней тропической стратосфере меняют направление между восточным и западным с периодом около 26 – 27 месяцев. Так была установлена квазидвухлетняя цикличность , когда в слое тропической стратосферы от 18 – 20 км до 35 км в течение примерно одного года господствуют ветры восточных направлений, а в течение следующего года – западных. Квазидвухлетняя цикличность особенно отчетливо выражена в зоне 8 – 10° по обе стороны от экватора и имеет наибольшую амплитуду на уровне около 23 км, где средняя продолжительность цикла составляет около 26 месяцев. Каждый из зональных переносов появляется раньше всего в верхних слоях, на уровне около 35 км, и постепенно со скоростью 1 – 1,5 км в месяц распространяется вниз.

В верхней тропической стратосфере позднее была обнаружена шестимесячная цикличность, которая находится в определенной связи с двухлетней.

Новейшие исследования стратосферы, как было отмечено выше, обнаруживают значительную взаимосвязь между ней и тропосферой. Например, некоторые работы показали, что распространение климатического сигнала из тропосферы в стратосферу происходит довольно быстро – в течение 3 – 10 суток. После этого в стратосфере аномальный сигнал существует намного дольше (15 – 40 суток), что дает основания для долгосрочного прогноза погоды по параметрам стратосферы.

Литература:
П.Н. Тверской. Курс метеорологии. Гидрометеоиздат, 1962.
Атмосфера Земли. Сборник. Москва, 1953.
А.Л. Кац. Циркуляция в стратосфере и мезосфере. Гидрометеоиздат, 1968.
Использованы также материалы журналов «Метеорология и гидрология» и «Наука и жизнь».

Стратосфера — это один из верхних слоев воздушной оболочки нашей планеты. Она начинается на высоте примерно 11 км над землей. Здесь уже не летают самолеты пассажирской авиации и крайне редко образуются облака. В стратосфере располагается озоновый слой Земли - тонкая оболочка, защищающая планету от проникновения губительного ультрафиолета.

Воздушная оболочка планеты

Атмосфера представляет собой газовую оболочку Земли, прилегающую внутренней поверхностью к гидросфере и земной коре. Внешняя граница ее постепенно переходит в космическое пространство. Состав атмосферы включает газы: азот, кислород, аргон, углекислый газ и так далее, — а также примеси в виде пыли, капель воды, кристаллов льда, продуктов горения. Соотношение основных элементов воздушной оболочки сохраняется постоянным. Исключение составляют углекислый газ и вода — их количество в атмосфере нередко меняется.

Слои газовой оболочки

Атмосферу подразделяют на несколько слоев, располагающихся друг над другом и имеющих особенности в составе:

    пограничный слой — непосредственно прилегает к поверхности планеты, простирается до высоты в 1-2 км;

    тропосфера — второй слой, внешняя граница в среднем располагается на высоте 11 км, здесь сконцентрирован практически весь водяной пар атмосферы, образуются облака, возникают циклоны и антициклоны, по мере увеличения высоты подает температура;

    тропопауза — переходный слой, характеризующийся прекращением снижения температуры;

    стратосфера — это слой, простирающийся до высоты 50 км и делящийся на три зоны: с 11 до 25 км температура меняется незначительно, с 25 до 40 — температура повышается, с 40 до 50 — температура остается постоянной (стратопауза);

    мезосфера простирается на высоту до 80-90 км;

    термосфера достигает отметки 700-800 км над уровнем моря, здесь на высоте 100 км располагается линия Кармана, которую принимают за границу между атмосферой Земли и космосом;

    экзосфера также называется зоной рассеяния, здесь сильно теряет частицы вещества, и они улетают в космос.

Изменения температуры в стратосфере

Итак, стратосфера — это часть газовой оболочки планеты, следующая за тропосферой. Здесь температура воздуха, постоянная на протяжении тропопаузы, начинает изменяться. Высота стратосферы составляет примерно 40 км. Нижняя граница — 11 км над уровнем моря. Начиная с этой отметки, температура претерпевает небольшие изменения. На высоте 25 км показатель нагрева начинает медленно расти. К отметке 40 км над уровнем моря температура повышается от -56,5º до +0,8ºС. Далее она остается близкой к нулю градусов вплоть до высоты 50-55 км. Зона между 40 и 55 километрами называется стратопаузой, поскольку температура здесь не меняется. Она является переходной зоной от стратосферы к мезосфере.

Особенности стратосферы

Стратосфера Земли содержит около 20% массы всей атмосферы. Воздух здесь настолько разрежен, что пребывание человека без специального скафандра невозможно. Этот факт — одна из причин, по которой полеты в стратосферу стали осуществляться лишь сравнительно недавно.

Другая особенность газовой оболочки планеты на высоте 11-50 км заключается в очень небольшом количестве водяного пара. В стратосфере по этой причине практически никогда не образуются облака. Для них просто нет строительного материала. Однако редко все же можно наблюдать так называемые перламутровые облака, которыми «украшается» стратосфера (фото представлено ниже) на высоте 20-30 км над уровнем моря. Тонкие, как бы светящиеся изнутри образования можно наблюдать после заката или перед восходом. Формой перламутровые облака похожи на перистые или перисто-кучевые.

Озоновый слой Земли

Главная отличительная черта стратосферы — это максимальная во всей атмосфере концентрация озона. Он формируется под действием солнечных лучей и защищает все живое на планете от их губительного излучения. Озоновый слой Земли располагается на высоте 20-25 км над уровнем моря. Молекулы О 3 распределены во всей стратосфере и даже есть у поверхности планеты, однако на этом уровне наблюдается их наибольшая концентрация.

Нужно заметить, что озоновый слой Земли составляет всего 3-4 мм. Такой будет его толщина, если разместить частицы этого газа в условиях нормального давления, например, у поверхности планеты. Озон образуется в результате распада молекулы кислорода под действием ультрафиолета на два атома. Один из них соединяется с «полноценной» молекулой и образуется озон — О 3 .

Опасный защитник

Таким образом, сегодня стратосфера — это более изведанный слой атмосферы, нежели в начале прошлого века. Однако по-прежнему не очень понятным остается будущее озонового слоя, без которого не возникла бы жизнь на Земле. Пока страны сокращают производство фреона, одни ученые говорят, что это не принесет особой пользы, по крайней мере, такими темпами, а другие, что это и вовсе не нужно, поскольку основная часть вредных веществ образуется естественным путем. Кто прав — рассудит время.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!