Мода и стиль. Красота и здоровье. Дом. Он и ты

Жизнь замечательных имен.

Космос - это таинственное и максимально неблагоприятное пространство. Тем не менее Циолковский считал, что будущее человечества заключается именно в космосе. Нет никаких оснований спорить с этим великим ученым. Космос - это безграничные перспективы для развития всей человеческой цивилизации и расширения жизненного пространства. Кроме того, он скрывает в себе ответы на многие вопросы. Сегодня человек активно использует космическое пространство. И от того, как взлетают ракеты, зависит наше будущее. Не менее важно и понимание людьми этого процесса.

Космическая гонка

Не так давно две могучие сверхдержавы находились в состоянии холодной войны. Это было похоже на бесконечное состязание. Многие этот промежуток времени предпочитают описывать как обычную гонку вооружений, но это совершенно не так. Это гонка науки. Именно ей мы обязаны многими гаджетами и благами цивилизации, к которым так привыкли.

Космическая гонка была лишь одним из важнейших элементов холодной войны. Всего за несколько десятилетий человек перешел от обычных атмосферных полетов к высадке на Луне. Это невероятный прогресс, если сравнивать с другими достижениями. В то прекрасное время люди думали, что освоение Марса — это куда более близкая и реальная задача, чем примирение СССР и США. Именно тогда люди были максимально увлечены космосом. Практически каждый студент или школьник понимал, как взлетает ракета. Это не было сложным знанием, наоборот. Такая информация была простой и очень интересной. Астрономия приобрела чрезвычайную важность среди других наук. В те годы никто и сказать не мог, что Земля плоская. Доступное образование повсеместно ликвидировало невежество. Однако те времена давно прошли, и сегодня все совсем не так.

Декаданс

С распадом СССР закончилась и конкуренция. Пропал повод для сверхфинансирования космических программ. Многие перспективные и прорывные проекты так и не были реализованы. Время стремления к звездам сменилось настоящим декадансом. Что, как известно, обозначает упадок, регресс и определенную степень деградации. Для того чтобы понять это, не нужно быть гением. Достаточно обратить внимание на медиасети. Секта плоской земли активно ведет свою пропаганду. Люди не знают элементарных вещей. В Российской Федерации астрономия и вовсе не преподается в школах. Если подойти к прохожему и поинтересоваться, как взлетают ракеты, он не ответит на этот простой вопрос.

Люди даже не знают о том, по какой траектории ракеты летают. В таких условиях нет и смысла спрашивать про орбитальную механику. Отсутствие должного образования, "Голливуд" и видеоигры - все это создало ложное представление о космосе как таковом и о полетах к звездам.

Это не вертикальный полет

Земля не плоская, и это неоспоримый факт. Земля даже не шар, ведь она немного сплюснута по полюсам. Как взлетают ракеты в таких условиях? Поэтапно, в несколько стадий и не вертикально.

Самое большое заблуждение нашего времени состоит в том, что ракеты взлетают вертикально. Это совсем не так. Такая схема выхода на орбиту возможна, но очень неэффективна. Ракетное топливо заканчивается очень быстро. Иногда - менее чем за 10 минут. Для такого взлета попросту не хватит топлива. Современные ракеты взлетают вертикально только на начальном этапе полета. Затем автоматика начинает давать ракете небольшой крен. Причем чем выше высота полета, тем заметнее угол крена космической ракеты. Так, апогей и перигей орбиты формируются сбалансированно. Таким образом достигается максимально комфортное соотношение между эффективностью и расходом топлива. Орбита получается близкой к идеальному кругу. Идеальной же она не будет никогда.

Если ракета взлетает вертикально вверх, получится невероятно огромный апогей. Топливо закончится раньше, чем появится перигей. Иными словами, ракета не только не вылетит на орбиту, но и из-за нехватки топлива полетит по параболе обратно на планету.

В основе всего - двигатель

Любое тело не способно двигаться само по себе. Должно быть что-то, что заставляет его это делать. В данном случае это ракетный двигатель. Ракета, взлетая в космос, не теряет своей способности двигаться. Для многих это непонятно, ведь в вакууме реакция горения невозможна. Ответ максимально прост: немного иной.

Итак, ракета летит в В ее баках находится два компонента. Это топливо и окислитель. Их смешивание обеспечивает воспламенение смеси. Однако из сопел вырывается не огонь, а раскаленный газ. В этом случае нет никаких противоречий. Такая установка прекрасно работает в вакууме.

Ракетные двигатели бывают нескольких типов. Это жидкостные, твердотопливные, ионные, электрореактивные и ядерные. Первые два вида применяются чаще всего, так как способны давать наибольшую тягу. Жидкостные применяются в космических ракетах, твердотопливные - в межконтинентальных баллистических с ядерным зарядом. Электрореактивные и атомные предназначены для максимально эффективного передвижения в вакууме, и именно на них возлагают максимум надежд. В настоящее время вне тестовых стендов они не применяются.

Однако недавно Роскосмос разместил заказ на разработку орбитального буксира с ядерным двигателем. Это дает повод надеяться на развитие технологии.

Особняком держится узкая группа двигателей орбитального маневрирования. Они предназначены для управления Однако используются не в ракетах, а в космических кораблях. Их недостаточно для полетов, но хватает для маневрирования.

Скорость

К сожалению, в наше время люди приравнивают космические полеты к базовым единицам измерения. С какой скоростью взлетает ракета? Это вопрос не совсем корректен по отношению к Совершенно неважно, с какой скоростью они взлетают.

Ракет существует довольно-таки много, и все из них имеют разную скорость. Те, что предназначены для вывода космонавтов на орбиту, летят медленнее грузовых. Человек, в отличие от груза, ограничен перегрузками. Грузовые же ракеты, например сверхтяжелая Falcon Heavy, взлетает слишком быстро.

Точные единицы скорости посчитать трудно. Прежде всего потому, что они зависят от полезной нагрузки РН (ракеты-носителя). Вполне логично, что РН с полной загрузкой взлетает гораздо медленнее полупустой РН. Однако есть общая величина, которую все ракеты стремятся достигнуть. Это называется космической скоростью.

Существует первая, вторая и, соответственно, третья космическая скорости.

Первая - необходимая скорость, которая позволит двигаться по орбите и не падать на планету. Она составляет 7,9 км в секунду.

Вторая нужна для того, чтобы покинуть земную орбиту и отправиться к орбите другого небесного тела.

Третья же позволит аппарату преодолеть притяжение Солнечной системы и покинуть ее. В настоящее время с такой скоростью летят аппараты "Вояджер-1" и "Вояджер-2". Однако вопреки словам СМИ, они все еще не покинули границы Солнечной системы. С астрономической точки зрения им потребуется не менее 30 000 лет, чтобы достигнуть облака Орта. Гелиопауза же не является границей звездной системы. Это лишь место, в котором солнечный ветер сталкивается с межсистемной средой.

Высота

На какую высоту взлетает ракета? На ту, которая требуется. После достижения гипотетической границы космоса и атмосферы измерять расстояние между кораблем и поверхностью планеты некорректно. После выхода на орбиту корабль находится в другой среде, и дистанция измеряется в величинах расстояния.

Межконтинентальная баллистическая ракета — весьма впечатляющее творение человека. Огромные размеры, термоядерная мощь, столб пламени, рев двигателей и грозный рокот пуска… Однако все это существует лишь на земле и в первые минуты запуска. По их истечении ракета прекращает существовать. Дальше в полет и на выполнение боевой задачи уходит лишь то, что остается от ракеты после разгона — ее полезная нагрузка.

При больших дальностях пуска полезная нагрузка межконтинентальной баллистической ракеты уходит в космическую высоту на многие сотни километров. Поднимается в слой низкоорбитальных спутников, на 1000−1200 км над Землей, и ненадолго располагается среди них, лишь слегка отставая от их общего бега. А затем по эллиптической траектории начинает скатываться вниз…


Что это, собственно, за нагрузка?

Баллистическая ракета состоит из двух главных частей — разгоняющей части и другой, ради которой затеян разгон. Разгоняющая часть — это пара или тройка больших многотонных ступеней, под завязку набитых топливом и с двигателями снизу. Они придают необходимую скорость и направление движению другой главной части ракеты — головной. Разгонные ступени, сменяя друг друга в эстафете пуска, ускоряют эту головную часть в направлении района ее будущего падения.

Головная часть ракеты — это сложный груз из многих элементов. Он содержит боеголовку (одну или несколько), платформу, на которой эти боеголовки размещены вместе со всем остальным хозяйством (вроде средств обмана радаров и противоракет противника), и обтекатель. Еще в головной части есть топливо и сжатые газы. Вся головная часть к цели не полетит. Она, как ранее и сама баллистическая ракета, разделится на много элементов и просто перестанет существовать как одно целое. Обтекатель от нее отделится еще неподалеку от района пуска, при работе второй ступени, и где-то там по дороге и упадет. Платформа развалится при входе в воздух района падения. Сквозь атмосферу до цели дойдут элементы только одного типа. Боеголовки. Вблизи боеголовка выглядит как вытянутый конус длиною метр или полтора, в основании толщиной с туловище человека. Нос конуса заостренный либо немного затупленный. Конус этот — специальный летательный аппарат, задача которого — доставка оружия к цели. Мы вернемся к боеголовкам позже и познакомимся с ними ближе.


Тянуть или толкать?

В ракете все боеголовки расположены на так называемой ступени разведения, или в «автобусе». Почему автобус? Потому что, освободившись сначала от обтекателя, а затем от последней разгонной ступени, ступень разведения развозит боеголовки, как пассажиров по заданным остановкам, по своим траекториям, по которым смертоносные конусы разойдутся к своим целям.

Еще «автобус» называют боевой ступенью, потому что ее работа определяет точность наведения боеголовки в точку цели, а значит, и боевую эффективность. Ступень разведения и ее работа — один из самых больших секретов в ракете. Но мы все же слегка, схематично, взглянем на эту таинственную ступень и на ее непростой танец в космосе.

Ступень разведения имеет разные формы. Чаще всего она похожа на круглый пенек или на широкий каравай хлеба, на котором сверху установлены боеголовки остриями вперед, каждая на своем пружинном толкателе. Боеголовки заранее расположены под точными углами отделения (на ракетной базе, вручную, с помощью теодолитов) и смотрят в разные стороны, как пучок морковок, как иголки у ежика. Ощетинившаяся боеголовками платформа занимает в полете заданное, гиростабилизированное в пространстве положение. И в нужные моменты с нее поодиночке выталкиваются боеголовки. Выталкиваются сразу после завершения разгона и отделения от последней разгонной ступени. Пока (мало ли что?) не сбили противоракетным оружием весь этот неразведенный улей или не отказало что-либо на борту ступени разведения.


На снимках — ступени разведения американской тяжелой МБР LGM0118A Peacekeeper, также известной как MX. Ракета была оснащена десятью разделяющимися боеголовками по 300 кт. Ракета снята с вооружения в 2005 году.

Но так было раньше, на заре разделяющихся головных частей. Сейчас разведение представляет собой совсем другую картину. Если раньше боеголовки «торчали» вперед, то теперь впереди по ходу находится сама ступень, а боеголовки висят снизу, вершинами назад, перевернутые, как летучие мыши. Сам «автобус» в некоторых ракетах тоже лежит в перевернутом состоянии, в специальной выемке в верхней ступени ракеты. Теперь после отделения ступень разведения не толкает, а тащит боеголовки за собой. Причем тащит, упираясь крестообразно расставленными четырьмя «лапами», развернутыми впереди. На концах этих металлических лап находятся направленные назад тяговые сопла ступени разведения. После отделения от разгонной ступени «автобус» очень точно, прецизионно выставляет свое движение в начинающемся космосе с помощью собственной мощной системы наведения. Сам занимает точную тропу очередной боеголовки — ее индивидуальную тропу.

Затем размыкаются специальные безынерционные замки, державшие очередную отделяемую боеголовку. И даже не отделенная, а просто теперь уже ничем не связанная со ступенью боеголовка остается неподвижно висеть здесь же, в полной невесомости. Начались и потекли мгновенья ее собственного полета. Словно одна отдельная ягода рядом с гроздью винограда с другими виноградинами-боеголовками, еще не сорванными со ступени процессом разведения.


К-551 «Владимир Мономах» — российская атомная подводная лодка стратегического назначения (проект 955 «Борей»), вооруженная 16 твердотопливными МБР «Булава» с десятью разделяющимися боевыми блоками.

Деликатные движения

Теперь задача ступени — отползти от боеголовки как можно деликатнее, не нарушив ее точно выставленного (нацеленного) движения газовыми струями своих сопел. Если сверхзвуковая струя сопла попадет по отделенной боеголовке, то неминуемо внесет свою добавку в параметры ее движения. За последующее время полета (а это полчаса — минут пятьдесят, в зависимости от дальности пуска) боеголовка продрейфует от этого выхлопного «шлепка» струи на полкилометра-километр вбок от цели, а то и дальше. Продрейфует без преград: там же космос, шлепнули — поплыла, ничем не удерживаясь. Но разве километр вбок — это точность сегодня?


Подводные лодки проекта 955 «Борей» — серия российских атомных подводных лодок класса «ракетный подводный крейсер стратегического назначения» четвертого поколения. Первоначально проект создавался под ракету «Барк», ей на смену пришла «Булава».

Чтобы избежать таких эффектов, как раз и нужны разнесенные в стороны четыре верхние «лапы» с двигателями. Ступень как бы подтягивается на них вперед, чтобы струи выхлопов шли по сторонам и не могли зацепить отделяемую брюшком ступени боеголовку. Вся тяга разделена между четырьмя соплами, что снижает мощность каждой отдельной струи. Есть и другие особенности. Например, если на бубликообразной ступени разведения (с пустотой посередине — этим отверстием она надета на разгонную ступень ракеты, как обручальное кольцо на палец) ракеты «Трайдент-II D5» система управления определяет, что отделенная боеголовка все же попадает под выхлоп одного из сопел, то система управления это сопло отключает. Делает «тишину» над боеголовкой.

Ступень нежно, как мать от колыбельки уснувшего дитяти, боясь нарушить его покой, на цыпочках отходит в пространстве на трех оставшихся соплах в режиме малой тяги, а боеголовка остается на прицельной траектории. Затем «бублик» ступени с крестовиной тяговых сопел проворачивается вокруг оси, чтобы боеголовка вышла из-под зоны факела выключенного сопла. Теперь ступень отходит от оставляемой боеголовки уже на всех четырех соплах, но пока тоже на малом газу. При достижении достаточного расстояния включается основная тяга, и ступень энергично перемещается в область прицельной траектории следующей боеголовки. Там расчетно тормозится и снова очень точно устанавливает параметры своего движения, после чего отделяет от себя очередную боеголовку. И так — пока не высадит каждую боеголовку на ее траекторию. Процесс этот быстр, гораздо быстрее, чем вы читаете о нем. За полторы-две минуты боевая ступень разводит десяток боеголовок.


Американские подводные лодки класса «Огайо» — единственный тип ракетоносцев, находящийся на вооружении США. Несет на борту 24 баллистических ракеты с РГЧ Trident-II (D5). Количество боевых блоков (в зависимости от мощности) — 8 или 16.

Бездны математики

Сказанного выше вполне достаточно для понимания, как начинается собственный путь боеголовки. Но если приоткрыть дверь чуть шире и бросить взгляд чуть глубже, можно заметить, что сегодня разворот в пространстве ступени разведения, несущей боеголовки, — это область применения кватернионного исчисления, где бортовая система ориентации обрабатывает измеряемые параметры своего движения с непрерывным построением на борту кватерниона ориентации. Кватернион — это такое комплексное число (над полем комплексных чисел лежит плоское тело кватернионов, как сказали бы математики на своем точном языке определений). Но не с обычными двумя частями, действительной и мнимой, а с одной действительной и тремя мнимыми. Итого у кватерниона четыре части, о чем, собственно, и говорит латинский корень quatro.

Ступень разведения выполняет свою работу довольно низко, сразу после выключения разгонных ступеней. То есть на высоте 100−150 км. А там еще сказывается влияние гравитационных аномалий поверхности Земли, разнородностей в ровном поле тяготения, окружающем Землю. Откуда они? Из неровностей рельефа, горных систем, залегания пород разной плотности, океанических впадин. Гравитационные аномалии либо притягивают к себе ступень добавочным притяжением, либо, наоборот, слегка отпускают ее от Земли.


В таких неоднородностях, сложной ряби местного гравитационного поля, ступень разведения должна расставить боеголовки с прецизионной точностью. Для этого пришлось создать более детальную карту гравитационного поля Земли. «Излагать» особенности реального поля лучше в системах дифференциальных уравнений, описывающих точное баллистическое движение. Это большие, емкие (для включения подробностей) системы из нескольких тысяч дифференциальных уравнений, с несколькими десятками тысяч чисел-констант. А само гравитационное поле на низких высотах, в непосредственной околоземной области, рассматривают как совместное притяжение нескольких сотен точечных масс разного «веса», расположенных около центра Земли в определенном порядке. Так достигается более точное моделирование реального поля тяготения Земли на трассе полета ракеты. И более точная работа с ним системы управления полетом. А еще… но полно! — не будем заглядывать дальше и закроем дверь; нам вполне хватит и сказанного.


Полезная нагрузка межконтинентальной баллистической ракеты большую часть полета проводит в режиме космического объекта, поднимаясь на высоту, в три раза больше высоты МКС. Огромной длины траектория должна быть просчитана с особой точностью.

Полет без боеголовок

Ступень разведения, разогнанная ракетой в сторону того же географического района, куда должны упасть боеголовки, продолжает свой полет вместе с ними. Ведь отстать она не может, да и зачем? После разведения боеголовок ступень срочно занимается другими делами. Она отходит в сторону от боеголовок, заранее зная, что будет лететь немного не так, как боеголовки, и не желая их потревожить. Все свои дальнейшие действия ступень разведения тоже посвящает боеголовкам. Это материнское желание всячески оберегать полет своих «деток» продолжается всю ее оставшуюся недолгую жизнь. Недолгую, но насыщенную.

После отделенных боеголовок наступает черед других подопечных. В стороны от ступени начинают разлетаться самые забавные штуковины. Словно фокусник, выпускает она в пространство множество надувающихся воздушных шариков, какие-то металлические штучки, напоминающие раскрытые ножницы, и предметы всяких прочих форм. Прочные воздушные шарики ярко сверкают в космическом солнце ртутным блеском металлизированной поверхности. Они довольно большие, некоторые по форме напоминают боеголовки, летящие неподалеку. Их поверхность, покрытая алюминиевым напылением, отражает радиосигнал радара издали почти так же, как и корпус боеголовки. Наземные радары противника воспримут эти надувные боеголовки наравне с реальными. Разумеется, в первые же мгновения входа в атмосферу эти шарики отстанут и немедленно лопнут. Но до этого они будут отвлекать на себя и загружать вычислительные мощности наземных радаров — и дальнего обнаружения, и наведения противоракетных комплексов. На языке перехватчиков баллистических ракет это называется «осложнять текущую баллистическую обстановку». А всё небесное воинство, неумолимо движущееся к району падения, включая боевые блоки настоящие и ложные, надувные шарики, дипольные и уголковые отражатели, вся эта разношерстная стая называется «множественные баллистические цели в осложненной баллистической обстановке».

Металлические ножницы раскрываются и становятся электрическими дипольными отражателями — их множество, и они хорошо отражают радиосигнал ощупывающего их луча радара дальнего противоракетного обнаружения. Вместо десяти искомых жирных уток радар видит огромную размытую стаю маленьких воробьев, в которой трудно что-то разобрать. Устройства всяких форм и размеров отражают разные длины волн.

Кроме всей этой мишуры, ступень теоретически может сама испускать радиосигналы, которые мешают наводиться противоракетам противника. Или отвлекать их на себя. В конце концов, мало ли чем она может быть занята — ведь летит целая ступень, большая и сложная, почему бы не нагрузить ее хорошей сольной программой?


На фото — пуск межконтинентальной ракеты Trident II (США) с подводной лодки. В настоящий момент Trident («Трезубец») — единственное семейство МБР, ракеты которого устанавливаются на американских подводных лодках. Максимальный забрасываемый вес — 2800 кг.

Последний отрезок

Однако с точки зрения аэродинамики ступень не боеголовка. Если та — маленькая и тяжеленькая узкая морковка, то ступень — пустое обширное ведро, с гулкими опустевшими топливными баками, большим необтекаемым корпусом и отсутствием ориентации в начинающем набегать потоке. Своим широким телом с приличной парусностью ступень гораздо раньше отзывается на первые дуновения встречного потока. Боеголовки к тому же разворачиваются вдоль потока, с наименьшим аэродинамическим сопротивлением пробивая атмосферу. Ступень же наваливается на воздух своими обширными боками и днищами как придется. Бороться с тормозящей силой потока она не может. Ее баллистический коэффициент — «сплав» массивности и компактности — гораздо хуже боеголовочного. Сразу и сильно начинает она замедляться и отставать от боеголовок. Но силы потока нарастают неумолимо, одновременно и температура прогревает тонкий незащищенный металл, лишая его прочности. Остатки топлива весело кипят в раскаляющихся баках. Наконец, происходит потеря устойчивости конструкции корпуса под обжавшей ее аэродинамической нагрузкой. Перегрузка помогает крушить переборки внутри. Крак! Хрясь! Смявшееся тело тут же охватывают гиперзвуковые ударные волны, разрывая ступень на части и разбрасывая их. Пролетев немного в уплотняющемся воздухе, куски снова разламываются на более мелкие фрагменты. Остатки топлива реагируют мгновенно. Разлетающиеся осколки конструктивных элементов из магниевых сплавов зажигаются раскаленным воздухом и мгновенно сгорают с ослепительной вспышкой, похожей на вспышку фотоаппарата — недаром в первых фотовспышках поджигали магний!


Все сейчас горит огнем, все обтянуто раскаленной плазмой и хорошо светит вокруг оранжевым цветом углей из костра. Более плотные части уходят тормозиться вперед, более легкие и парусные сдуваются в хвост, растягивающийся по небу. Все горящие компоненты дают плотные дымовые шлейфы, хотя на таких скоростях этих самых плотных шлейфов быть не может из-за чудовищного разбавления потоком. Но издали их видно прекрасно. Выброшенные частицы дыма растягиваются по следу полета этого каравана кусков и кусочков, наполняя атмосферу широким белым следом. Ударная ионизация порождает ночное зеленоватое свечение этого шлейфа. Из-за неправильной формы фрагментов их торможение стремительно: все, что не сгорело, быстро теряет скорость, а с ней и горячительное действие воздуха. Сверхзвук — сильнейший тормоз! Став в небе, словно разваливающийся на путях поезд, и тут же охладившись высотным морозным дозвуком, полоса фрагментов становится визуально неразличимой, теряет свою форму и строй и переходит в долгое, минут на двадцать, тихое хаотичное рассеивание в воздухе. Если оказаться в нужном месте, можно услышать, как тихо звякнет об ствол березы маленький обгорелый кусочек дюраля. Вот ты и прибыла. Прощай, ступень разведения!

мы разбирали важнейший компонент полета в глубокий космос – гравитационный маневр. Но в силу своей сложности такой проект, как космический полет, всегда можно разложить на большой ряд технологий и изобретений, которые делают его возможным. Таблица Менделеева, линейная алгебра, расчеты Циолковского, сопромат и еще целые области науки внесли свою лепту в первый, да и все последующие полеты человека в космос. В сегодняшней статье мы расскажем, как и кому пришла в голову идея космической ракеты, из чего она состоит и как из чертежей и расчетов ракеты превратились в средство доставки людей и грузов в космос.

Краткая история ракет

Общий принцип реактивного полета, который лег в основу всех ракет, прост - от тела отделяется какая-то часть, приводящая все остальное в движение.

Кто первым реализовал этот принцип – неизвестно, но различные догадки и домыслы доводят генеалогию ракетостроения аж до Архимеда. Доподлинно о первых подобных изобретениях известно, что ими активно пользовались китайцы, которые заряжали их порохом и за счет взрыва запускали в небо. Таким образом они создали первые твердотопливные ракеты. Большой интерес к ракетам появился у европейских правительств в начале

Второй ракетный бум

Ракеты ждали своего часа и дождались: в 1920-х годах начался второй ракетный бум, и связан он в первую очередь с двумя именами.

Константин Эдуардович Циолковский - ученый-самоучка из Рязанской губернии, невзирая на трудности и препятствия, сам дошел до многих открытий, без которых невозможно было бы даже говорить о космосе. Идея использования жидкого топлива, формула Циолковского, которая рассчитывает необходимую для полета скорость, исходя из соотношения конечной и начальной масс, многоступенчатая ракета - все это его заслуга. Во многом под влиянием его трудов создавалось и оформлялось отечественное ракетостроение. В Советском Союзе начали стихийно возникать общества и кружки по изучению реактивного движения, в числе которых ГИРД - группа изучения реактивного движения, а в 1933 году под патронажем властей появился Реактивный институт.

Константин Эдуардович Циолковский.
Источник: Wikimedia.org

Второй герой ракетной гонки - немецкий физик Вернер фон Браун. Браун имел отличное образование и живой ум, а после знакомства с другим светилом мирового ракетостроения, Генрихом Обертом, он решил приложить все свои силы к созданию и усовершенствованию ракет. В годы Второй Мировой фон Браун фактически стал отцом «оружия возмездия» Рейха - ракеты «Фау-2», которую немцы начали применять на поле боя в 1944 году. «Крылатый ужас», как называли её в прессе, принес разрушение многим английским городам, но, к счастью, на тот момент крах нацизма был уже делом времени. Вернер фон Браун вместе со своим братом решил сдаться в плен к американцам, и, как показала история, это был счастливый билет не только и не столько для ученых, сколько для самих американцев. С 1955 года Браун работает на американское правительство, и его изобретения ложатся в основу космической программы США.

Но вернемся в 1930-е. Советское правительство по достоинству оценило рвение энтузиастов на пути к космосу и решило употребить его в своих интересах. В годы войны себя отлично показала «Катюша» - система залпового огня, которая стреляла реактивными ракетами. Это было во многом инновационное оружие: «Катюша» на базе легкого грузовика «Студебеккер» приезжала, разворачивалась, обстреливала сектор и уезжала, не давая немцам опомниться.

Окончание войны подкинуло нашему руководству новую задачу: американцы продемонстрировали миру всю мощь ядерной бомбы, и стало совершенно очевидно, что на статус сверхдержавы может претендовать только тот, у кого есть нечто похожее. Но здесь была проблема. Дело в том, что, помимо самой бомбы, нам нужны были средства доставки, которые бы смогли обойти ПВО США. Самолеты для этого не годились. И СССР решил сделать ставку на ракеты.

Константин Эдуардович Циолковский умер в 1935 году, но ему на смену пришло целое поколение молодых ученых, которое и отправило человека в космос. Среди этих ученых был Сергей Павлович Королев, которому суждено было стать «козырем» Советов в космической гонке.

СССР принялся за создание своей межконтинентальной ракеты со всем усердием: были организованы институты, собраны лучшие ученые, в подмосковных Подлипках создается НИИ по ракетному вооружению, и работа кипит вовсю.

Только колоссальное напряжение сил, средств и умов позволило Советскому Союзу в кратчайшие сроки построить свою ракету, которую назвали Р-7. Именно её модификации вывели в космос «Спутник» и Юрия Гагарина, именно Сергей Королев и его соратники дали старт космической эре человечества. Но из чего состоит космическая ракета?

Конструкция ракеты

Схема двухступенчатой ракеты.

Чтобы вырваться за пределы земной атмосферы, ракетам требуется огромное количество энергии. При сгорании ракетного топлива образуется поток горячих газов, вырывающийся наружу через реактивное сопло. В результате возникает сила, толкающая ракету вперед — так же как воздух, вырывающийся из воздушного шарика, заставляет его лететь в противоположном направлении.

«Спейс Шаттл» для выхода на околоземную орбиту использует сразу две ракеты. Когда корабль оказывается в космосе, ракеты-носители и главный топливный бак отсоединяются и падают обратно на Землю.
«Шаттл» выводит на орбиту спутники, проводит различные научные эксперименты. На обратном пути он планирует и приземляется, как обычный самолет.

  1. Топливные баки содержат около двух миллионов литров (около полумиллиона галлонов) ракетного топлива.
  2. Парашюты замедляют скорость падения ракетных ускорителей на Землю после их отсоединения.
  3. Экипаж “Шаттла” может состоять из семи человек.
  4. Ракетный ускоритель
  5. Грузовой отсек
  6. Спутник
  7. Шасси

Что такое спутник?

Спутником называется любое тело, вращающееся вокруг планеты. Луна — спутник Земли Точно так же спутником Земли становится вышедший на ее орбиту космический аппарат. Искусственные спутники Земли находят самое разнообразное применение. Метеорологические спутники фотографируют облачный покров Земли, что помогает ученым предсказывать погоду. Астрономические спутники передают на землю информацию о звездах и планетах Спутники связи ретранслируют по всему миру телефонные разговоры и телевизионные передачи.

На рисунке слева — сделанная спутником фотография бури, которая только что миновала Великобританию и приближается к Скандинавии.

Вы это знали?

Когда астрономы смотрят на звезды, они видят многие из них такими, какими они были тысячи или даже миллионы лет назад. Некоторые из этих звезд, возможно, давно уже не существуют. Свет звезд идет к Земле так долго потому, что расстояние до них невероятно велико.

Ракеты поднимаются в космическое пространство за счет сжигания жидких или твердых топлив. После воспламенения в высокопрочных камерах сгорания эти топлива, обычно состоящие из горючего и окислителя, выделяют огромное количество тепла, создавая очень высокое давление, под действием которого продукты сгорания движутся в сторону земной поверхности через расширяющиеся сопла.

Так как продукты сгорания истекают из сопел вниз, ракета поднимается вверх. Это явление объясняется третьим законом Ньютона, в соответствии с которым для каждого действия существует равное по величине и противоположное по направлению противодействие. Поскольку двигателями на жидком топливе легче управлять, чем твердотопливными, их обычно используют в космических ракетах, в частности, в показанной на рисунке слева ракете Сатурн-5. Эта трехступенчатая ракета сжигает тысячи тонн жидкого водорода и кислорода для вывода космического корабля на орбиту.

Для быстрого подъема вверх тяга ракеты должна превышать ее вес примерно на 30 процентов. При этом, если космический корабль должен выйти на околоземную орбиту, он должен развить скорость около 8 километров в секунду. Тяга ракет может доходить до нескольких тысяч тонн.

  1. Пять двигателей первой ступени поднимают ракету на высоту 50-80 километров. После того как топливо первой ступени будет израсходовано, она отделится и включатся двигатели второй ступени.
  2. Примерно через 12 минут после старта вторая ступень доставляет ракету на высоту более 160 километров, после чего отделяется с пустыми баками. Также отделяется ракета аварийного спасения.
  3. Разгоняемая единственным двигателем третьей ступени, ракета переводит космический корабль «Аполлон» на временную околоземную орбиту, высотой около 320 километров. После непродолжительного перерыва двигатели включаются снова, увеличивая скорость космического корабля примерно до 11 километров в секунду и направляя его в сторону Луны.


Двигатель F-1 первой ступени сжигает топливо и выводит продукты сгорания в окружающую среду.

После запуска на орбиту космический корабль «Аполлон» получает разгонный импульс в сторону Луны. Затем третья ступень отделяется и космический корабль, состоящий из командного и лунного модулей, выходит на 100-километровую орбиту вокруг Луны, после чего лунный модуль совершает посадку. Доставив побывавших на Луне космонавтов на командный модуль, лунный модуль отделяется и прекращает свое функционирование.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!