Мода и стиль. Красота и здоровье. Дом. Он и ты

Лучевое оружие. новые виды оружия массового поражения

Первый раз лазер был продемонстрирован широкой общественности в 1960 году, и практически сразу же журналисты назвали его «лучом смерти». С тех пор разработки лазерного оружия не прекращаются ни на минуту: более полувека им занимались ученые СССР и США. Даже после окончания Холодной войны американцы не закрыли свои проекты боевых лазеров, несмотря на затрачиваемые гигантские суммы. И все бы ничего — если бы эти миллиардные вложения принесли ощутимый результат. Однако и по сей день лазерное оружие остается скорее экзотическим шоу, чем эффективным средством поражения.

При этом некоторые эксперты считают, что «доведение до ума» лазерных технологий вызовет настоящую революцию в военном деле. Едва ли пехотинцы сразу получат лазерные мечи или бластеры — но все это будет настоящий прорыв, например, в противоракетной обороне. Как бы то ни было, подобное новое оружие появится еще нескоро.

Тем не менее, разработки продолжаются. Активнее всего они идут в США. Бьются над разработкой «лучей смерти» ученые и в нашей стране, лазерное оружие России создается на основе наработок, сделанных еще в советский период. Лазерами интересуются Китай, Израиль и Индия. Участвуют в этой гонке Германия, Великобритания и Япония.

Но прежде чем говорить о преимуществах и недостатках лазерного оружия, следует разораться в сути вопроса и понять, на каких физических принципах работают лазеры.

Что такое «луч смерти»?

Лазерное оружие – это вид наступательного и оборонительного вооружения, которое в качестве поражающего элемента использует лазерный луч. Сегодня слово «лазер» прочно вошло в обиход, но мало кто знает, что на самом деле это аббревиатура, начальные буквы от словосочетания Light Amplification by Stimulated Emission Radiation («усиление света в результате вынужденного излучения»). Ученые называют лазер оптическим квантовым генератором, способным преобразовывать различные виды энергии (электрическую, световую, химическую, тепловую) в узконаправленный пучок когерентного, монохроматического излучения.

В числе первых теоретическими обоснованием работы лазеров занимался величайший физик XX столетия Альберт Эйнштейн. Экспериментальное подтверждение возможности получения лазерного излучения были получены в конце 20-х годов.

Лазер состоит из активной (или рабочей) среды, в качестве которой может выступать газ, твердое тело или жидкость, мощного источника энергии и резонатора, обычно представляющего собой систему зеркал.

К нашему времени лазеры нашли применение в самых разных сферах науки и техники. Жизнь современного человека буквально наполнена лазерами, хотя он не всегда и догадывается об этом. Указки и системы считывания штрих-кодов в магазинах, проигрыватели компакт-дисков и приборы определения точного расстояния, голография – все это мы имеем только благодаря этому удивительному изобретению под названием «лазер». Кроме того, лазеры активно используются в промышленности (для резки, пайки, гравировки), медицине (хирургия, косметология), навигации, в метрологии и при создании сверхточной измерительной техники.

Используется лазер и в военном деле. Однако в основном его применение сводится к различным системам локации, наведения оружия и навигации, а также к лазерной связи. Были попытки (в СССР и США) создать ослепляющее лазерное оружие, которое бы выводило из строя вражескую оптику и системы прицеливания. Но настоящих «лучей смерти» военные до сих пор так и не получили. Слишком уж технически сложной оказалась задача создать лазер такой мощности, который бы мог сбивать вражеские летательные аппараты и прожигать танки. Только сейчас технологический прогресс достиг того уровня, на котором лазерные системы вооружения становятся реальностью.

Преимущества и недостатки

Несмотря на все сложности, связанные с разработкой лазерного оружия, работы в этом направлении продолжаются весьма активно, во всем мире на них ежегодно тратятся миллиарды долларов. В чем преимущества боевых лазеров по сравнению с традиционными системами вооружения?

Вот основные из них:

  • Высокая скорость и точность поражения. Луч движется со скоростью света и достигает цели практически мгновенно. Ее уничтожение происходит за считанные секунды, для переноса огня на другую цель необходим минимум времени. Излучение поражает именно ту область, на которую было направлено, не влияя на окружающие предметы.
  • Лазерный луч способен перехватывать маневрирующие цели, что выгодно отличает его от противоракет и зенитных ракет. Его скорость такова, что отклониться от него практически невозможно.
  • Лазер можно использовать не только для уничтожения, но и для ослепления цели, а также ее обнаружения. С помощью регулировки мощности можно воздействовать на цель в весьма широких пределах: от предупреждения до нанесения критических повреждений.
  • Луч лазера не имеет массы, поэтому при выстреле не нужно вносить баллистические поправки, учитывать направление и силу ветра.
  • Отсутствует отдача.
  • Выстрел из лазерной установки не сопровождается такими демаскирующими факторами, как дым, огонь или сильный звук.
  • Боекомплект лазера определяется только мощностью источника энергии. Пока лазер подключен к нему, его «патроны» никогда не кончатся. Относительно низкая стоимость одного выстрела.

Однако есть у лазеров и серьезные недостатки, которые и являются причиной того, что пока они не стоят на вооружении ни одной армии:

  • Рассеивание. Из-за рефракции лазерный луч расширяется в атмосфере и теряет фокусировку. На расстоянии в 250 км пятно лазерного луча имеет диаметр 0,3-0,5 м, что, соответственно, резко уменьшает его температуру, делая лазер неопасным для цели. Еще хуже воздействуют на луч дым, дождь или туман. Именно по этой причине создание дальнобойных лазеров пока невозможно.
  • Невозможность вести загоризонтный обстрел. Луч лазера – это идеально прямая линия, им можно стрелять только по видимой цели.
  • Испарение металла цели затеняет ее и делает лазер менее эффективным.
  • Высокий уровень энергопотребления. Как уже было сказано выше, КПД лазерных систем мал, поэтому для создания оружия, способного поразить цель, нужно очень много энергии. Этот недостаток можно назвать ключевым. Только в последние годы появилась возможность создания лазерных установок более-менее приемлемого размера и мощности.
  • От лазера легко защититься. С лазерным лучом довольно просто справиться с помощью зеркальной поверхности. Любое зеркало отражает его, независимо от уровня мощности.

Боевые лазеры: история и перспективы

Работы над созданием боевых лазеров в СССР продолжаются с начала 60-х годов. Больше всего военных интересовало применение лазеров в качестве средства противоракетной и противовоздушной обороны. Наиболее известными советскими проектами в этой области стали программы «Терра» и «Омега». Испытания советских боевых лазеров проводились на полигоне Сары-Шаган в Казахстане. Проектами руководили академики Басов и Прохоров – лауреаты Нобелевской премии за работы в области изучения лазерного излучения.

После распада СССР работы на полигоне Сары-Шаган были прекращены.

Любопытный случай произошел в 1984 году. Лазерным локатором – он являлся составной частью «Терры» - был облучен американский шаттл «Челенджер», что привело к нарушениям в работе связи и сбоям другого оборудования корабля. Члены экипажа почувствовали внезапное недомогание. Американцы быстро поняли, что причиной проблем на борту челнока является какое-то электромагнитное воздействие с территории Советского Союза, и выразили протест. Этот факт можно назвать единственным практическим применением лазера на протяжении Холодной войны.

Вообще следует отметить, что локатор установки действовал очень успешно, чего нельзя сказать о боевом лазере, который должен был сбивать вражеские боеголовки. Проблема была в недостатке мощности. Решить эту проблему так и не смогли. Ничего не вышло и с другой программой – «Омега». В 1982 году установка смогла сбить радиоуправляемую мишень, но в целом по эффективности и стоимости она значительно проигрывала обычным зенитным ракетам.

В СССР разрабатывалось ручное лазерное оружие для космонавтов, лазерные пистолеты и карабины лежали на складах до середины 90-х годов. Но на практике это несмертельное оружие так и не применялось.

С новой силой разработки советского лазерного оружия начались после объявления американцами о развертывании программы «Стратегической оборонной инициативы» (СОИ). Ее целью было создания эшелонированной системы противоракетной обороны, которая бы смогла уничтожать советские ядерные боеголовки на различных этапах их полета. Одним из основных инструментов поражения баллистических ракет и ядерных блоков должны были стать лазеры, размещенные на околоземной орбите.

Советский Союз был просто обязан ответить на этот вызов. И 15 мая 1987 года состоялся первый старт сверхтяжелой ракеты «Энергия», которая должна была вывести на орбиту боевую лазерную станцию «Скиф», предназначенную для уничтожения американских спутников наведения, входящих в систему ПРО. Сбивать их предполагалось газодинамическим лазером. Однако сразу после отделения от «Энергии» «Скиф» потерял ориентацию и упал в Тихом океане.

Были в СССР и другие программы разработки боевых лазерных систем. Одна из них – самоходный комплекс «Сжатие», работы над которым велись в НПО «Астрофизика». Его задачей было не прожигание брони танков неприятеля, а выведение из строя оптико-электронных систем вражеской техники. В 1983 года на базе самоходной установки «Шилка» был разработан еще один лазерный комплекс – «Сангвин», который предназначался для уничтожения оптических систем вертолетов. Следует отметить, что СССР как минимум не уступал США в «лазерной» гонке.

Из американских проектов наиболее известным является лазер YAL-1А, размещенный на самолете Boeing-747-400F. Реализацией этой программы занималась компания Boeing. Основной задачей системы является уничтожение баллистических ракет противника на участке их активной траектории. Лазер был успешно испытан, но его практическое применение находится под большим вопросом. Дело в том, что максимальная дальность «стрельбы» YAL-1А составляет всего 200 км (по другим источникам – 250). Boeing-747 просто не сможет подлететь на такое расстояние, если противник располагает хотя бы минимальной системой ПВО.

Следует отметить, что лазерное оружие США создается сразу несколькими крупными компаниями, каждая из которых уже имеет чем похвастать.

В 2013 году американцы испытали лазерную систему HEL MD мощностью 10 кВт. С ее помощью удалось сбить несколько минометных мин и беспилотник . В 2018 году планируется провести испытания установки HEL MD с мощностью в 50 киловатт, а к 2020 году должна появиться 100-киловаттная установка.

Еще одна страна, которая занимается активной разработкой противоракетных лазеров, — это Израиль. Ракеты типа «Кассам», применяемые палестинскими террористами, - многолетняя «головная боль» этой израильтян. Сбивать «Кассамы»с помощью противоракет очень дорого, поэтому лазер выглядит как очень неплохая альтернатива. Разработка лазерной системы ПРО Nautilus началась в конце 90-х годов, над ней совместно работали американская компания Northrop Grumman и израильские специалисты. Однако эта система так и не была принята на вооружение, Израиль вышел из этой программы. Американцы использовали накопленный опыт для создания более совершенной лазерной ПРО Skyguard, испытания которой начались в 2008 году.

Основу обеих систем – Nautilus и Skyguard – составлял химический лазер THEL мощностью 1 мВт. Американцы называют Skyguard прорывом в области лазерного оружия.

Большую заинтересованность в лазерном оружии проявляют военно-морские силы США. По замыслу американских адмиралов, лазеры могут быть использованы в качестве эффективного элемента корабельных систем ПРО и ПВО. К тому же мощность силовых установок боевых судов вполне позволяет сделать «лучи смерти» по-настоящему смертоносными. Из последних американских разработок следует упомянуть о лазерной установке MLD, разработанной компанией Northrop Grumman.

В 2011 году началась разработка новой оборонительной системы TLS, в состав которой, кроме лазера, должна входить еще и скорострельная пушка. Проектом занимаются компании Boeing и ВАЕ Systems. По замыслу разработчиков, эта система должна поражать крылатые ракеты, вертолеты, самолеты и надводные цели на дистанциях до 5 км.

Сейчас разработкой новых систем лазерного вооружения занимаются в Европе (Германия, Великобритания), в Китае и в РФ.

В настоящее время вероятность создания дальнобойного лазера для уничтожения стратегических ракет (боеголовок) или боевых летательных аппаратов на дальних расстояниях выглядит минимальной. Совсем другое дело тактический уровень.

В 2012 году компания Lockheed Martin представила широкой общественности довольно компактный комплекс ПВО ADAM, который производит уничтожение целей с помощью луча лазера. Он способен уничтожать цели (снаряды, ракеты, мины, БПЛА) на дистанциях до 5 км. В 2018 году руководство этой компании заявило о создании нового поколения тактических лазеров мощностью от 60 кВт.

Немецкая оружейная компания Rheinmetall обещает выйти на рынок с новым тактическим высокомощным лазером High Energy Laser (HEL) в 2018 году. Ранее заявлялось, что в качестве базы для этого лазера рассматриваются колесный автомобиль, колесный БТР и гусеничный БТР M113.

В 2018 году в США было объявлено о создании тактического боевого лазера GBAD OTM, основной задачей которого является защита от разведывательных и ударных БПЛА противника. В настоящее время этот комплекс проходит испытания.

В 2014 году на оружейной выставке в Сингапуре была проведена презентация израильского боевого лазерного комплекса Iron Beam. Он предназначен для поражения снарядов, ракет и мин на малых дистанциях (до 2 км). В состав комплекса входит две твердотельные лазерные установки, РЛС и пульт управления.

Разработки лазерного оружия ведутся и в России, но большая часть информации об этих работах засекречена. В прошлом году заместитель министра обороны РФ Бирюков заявил о принятии на вооружение лазерных комплексов. По его словам, они могут быть установлены на наземные машины, боевые самолеты и корабли. Однако какое именно оружие имел в виду генерал, не совсем понятно. Известно, что в настоящее время продолжаются испытания лазерного комплекса воздушного базирования, который будет устанавливаться на транспортный самолет Ил-76. Подобными разработками занимались еще в СССР, такая лазерная система может быть использована для выведения из строя электронной «начинки» спутников и самолетов.

Создавая традиционные виды вооружения, ученые развитых государств большое внимание уделяют боевым изделиям ОНФП. Данной аббревиатурой называется любая разновидность вооружения, основанная на ранее не используемых физических принципах. К ОНФП принадлежат: лучевое оружие, геофизическое, кинетическое, инфразвуковое, радиочастотное, генное, а также средства ведения информационной войны. Главная задача ОНФП заключается в том, чтобы нейтрализовать противника без человеческих жертв и разрушений. В статье содержится информация о лучевом оружии.

Определение понятия

Лучевое оружие - это наступательный вид вооружения, в котором поражающим фактором является лазерный луч.

Сам лазер представляет собой систему, в которой присутствуют следующие элементы:

  • Активная (или рабочая) газовая, твердая или жидкая среда.
  • Мощный источник энергии.
  • Резонатор в виде системы зеркал.

Лазерное вооружение является системой специальных устройств, которые превращают энергию в остронаправленные лучи или в концентрированные пучки. Функцию данных устройств выполняют специальные генераторы. Энергия может быть электрической, световой, химической и тепловой. В зависимости от того, во что устройства преобразуют электромагнитную энергию, лучевое оружие в качестве поражающего фактора может использовать лазер или узконаправленный ускоренный пучок насыщенных энергией частиц.

Принцип действия

При наведении любого вида лучевого оружия на цель, та подвергается разрушительному воздействию предельно высокой температуры. Это ведет к тому, что сверхчувствительные элементы объекта плавятся и даже испаряются. В результате попадания лазера на человека у того наблюдаются термические ожоги. Также лазер разрушительно воздействует на органы зрения.

Преимущества

К преимуществам данного вида лазерного оружия можно отнести:

  • Скрытность. При использовании лазера отсутствуют такие внешние признаки, как огонь, дым и звук.
  • Высокая точность.
  • Мгновенность действия. Объект сгорает за считанные секунды. Чтобы перенести луч на новую цель, требуется очень мало времени.
  • Прямолинейность.
  • Высокая скорость. У объекта не остается времени на то, чтобы уклониться.
  • Отсутствие отдачи.
  • Бесконечность «боекомплекта». Он зависит только от мощности источника энергии.

Применение лазерного луча

Лазеры используются в космической отрасли. С их помощью уничтожаются межконтинентальные баллистические ракеты и искусственные спутники Земли. Достаточно эффективным является данное оружие и в тактических зонах вооруженных конфликтов, где лазер применяется для поражения органов зрения противника.

«Оружие будущего»

В США создаются лазеры, в которых используются химические свойства азота. Для «запитки» азотно-лучевого оружия применяется энергия, которая образуется в результате сгорания этилена в трифториде азота.

К сильным сторонам таких лазеров можно отнести:

  • Экологическую чистоту. В отличие от ядерного оружия, при использовании лазера не образуется радиация.
  • Относительную дешевизну. Азот в неограниченных количествах имеется в любой точке планеты.

«Лучи смерти»

Этот вид вооружения называется еще «пучковым». Объясняется такое название тем, что функцию поражающего элемента в данном оружии осуществляют заряженные или нейтральные частицы (электроны, протоны, нейтральные атомы водорода), собранные в остронаправленные пучки и разогнанные на очень большую скорость. В космическом пространстве пучковое ускорительное оружие используется для вывода из строя электронного оборудования межконтинентальных, баллистических и крылатых ракет. При ведении наземных боевых операций при помощи пучков уничтожается военная техника противника. Кроме того, ускорительное оружие пагубно воздействует на живую силу. Им, в первую очередь, поражаются гемоглобин крови, ферменты нервной системы, молекулы воды в живых организмах.

Как утверждают американские военные эксперты, у США имеется возможность эффективно воздействовать из космоса на большие площади земной поверхности при помощи ускорительного лучевого оружия. Массовое поражение людей и других живых организмов, находящихся на охваченных территориях, потенциально может стать результатом такого воздействия. Неофициально данный вид вооружения называют «лучами смерти».

История создания

В первой половине XX века идеей применения преобразованных в целенаправленные лучи различных видов энергии занимался проживавший в то время в Америке сербский ученый Никола Тесла. Лучевое оружие Теслы базировалось на совершенно новом физическом принципе, который еще не применялся в его прежних изобретениях по передаче электрической энергии на большие дистанции.

В разработках ученого транслируемая в атмосфере энергия фокусировалась при помощи луча на определенном объекте. Как утверждал физик, при помощи лазерного луча можно уничтожать с расстояния 400 тыс. метров до 10 тыс. единиц противника. Для генерации луча должны были создать специальные станции стоимостью 2 млн долларов. На их строительство, по словам ученого, ушло бы не менее трех месяцев. Доктором Джоном Трампом, занимавшим должность руководителя Национального комитета обороны США, подобные заявления были восприняты как спекулятивные и лишенные возможности к их реализации. Желая уравновесить мировой баланс и предотвратить начало второй мировой войны, в 1940 году Н. Тесла предложил правительству США раскрыть секреты своего «супер-оружия». Не получив должного понимания в Америке, ученый с подобными предложениями обращался и к правительствам других государств. Изобретение физика вызвало интерес в Советском Союзе. На переговорах с Н. Теслой интересы СССР в США представляла фирма «Амторг». За 25 тыс. долларов сербский изобретатель продал советским ученым планы для изготовления вакуумных камер, применяемых в лучевом оружии. В США изобретением физика заинтересовалось только после его смерти. Агентами ФБР были произведены обыски в кабинете ученого и изъята вся его документация.

Проектирование и испытание «луча смерти» осуществлялись в строгой секретности. Только в 1960 году широкая общественность впервые могла увидеть, что собой представляет лазерное оружие. В годы холодной войны соперничающими советскими и американскими учеными была активизирована работа по созданию своих «лучей смерти». В обоих государствах в эти проекты были вложены очень большие суммы. Испытания не прекратились даже после окончания холодной войны.

С целью обеспечить стратегическую противокосмическую и противоракетную оборону новым, очень эффективным и мощным поражающим средством, советскими учеными уже в 1950 году были начаты проекты по созданию сверхмощного лазерного оружия «Терра» и «Омега». Местом испытаний стал казахстанский полигон Сары-Шаган. После развала Советского Союза все работы на данном полигоне были прекращены.

Первая демонстрация

В 1984 году при помощи лазерного локатора «Терры» был подвергнут облучению американский шаттл «Челенджер». В результате нарушилась работа связи и электронного оборудования корабля. Кроме того, у членов экипажа было отмечено ухудшение самочувствия. Американцы поняли, что они стали объектом электромагнитного воздействия со стороны Советского Союза. За весь период холодной войны этот эпизод с использованием лучевого оружия был единственным.

В 80-е годы ученые СССР разработали программу боевой лазерной системы самоходного комплекса «Сжатие». Проектирование осуществлялось сотрудниками НПО «Астрофизика». Комплекс предназначался для того, чтобы прожигать броню вражеских танков и выводить из строя их оптико-электронные системы.

В 1983 году на базе самоходной установки «Шилка» был разработан новый лазерный комплекс «Сангвин». Его задача: уничтожать оптические системы, которыми оборудованы вертолеты противника.

Кроме того, советскими учеными специально для космонавтов было изготовлено несколько единиц ручного лазерного оружия. Однако эти несмертельные карабины и пистолеты так и не понадобились. Они лежали на складах до 1990 года.

Американский лазер YAL-1А

В середине прошлого столетия специально для самолета Boeing-747-400F был спроектирован лазер YAL-1А. Его задача состояла в уничтожении вражеских баллистических ракет. Несмотря на то что это лазерное оружие было успешно испытано, устанавливать его на воздушный корабль на практике оказалось нецелесообразным. Объясняется это тем, что максимальная дальность YAL-1А не превышает 200 км. Пилот Boeing-747 не станет приближаться к противнику при наличии у того даже самой минимальной системы противовоздушной обороны.

HEL MD

В 2013 году в США было разработано новое лучевое оружие. Его мощность составляет 10 кВт. В 2017-м новый лазер уже прошел свое боевое крещение в Персидском заливе. С его помощью были сбиты один и несколько минометных мин. К 2020 году американские ученые планируют данный лазер усовершенствовать. В конечном итоге система HEL MD будет собой представлять 100-киловатную установку.

Израильская лазерная система ПРО

В этой стране ученые также разрабатывают мощные противоракетные лазеры. Для атак на территории Израиля палестинскими террористами использовались ракеты «Кассам». В это время США развернуло программу «Стратегической оборонной инициативы» (СОИ). Northrop Grumman в конце 90-х совместно с израильскими учеными велись разработки лазерной системы противоракетной обороны Nautilus. Планировалось, что вооруженные силы Израиля воспользуются ею для защиты от палестинских ракет. Однако вскоре Израиль из СОИ вышел, а лазерная система так и не поступила на вооружение государства.

Лучевое оружие России

По словам замминистра обороны в 2014 году специально для наземных машин, вертолетов, боевых самолетов и кораблей поступили на вооружение несколько лазерных комплексов. Что они собой представляют, а также информация о их количестве на данный момент не разглашается. Сегодня российская армия испытывает лазерную установку А-60, которой в дальнейшем планируют оснастить самолет Ил-76. Местом лазера стала носовая часть В ходе испытаний оказалось, что «оружие будущего» малоэффективно в туманную и облачную погоду и нуждается в доработке. Также на качество луча отрицательно воздействуют высокая облачность и снег.

И все же данный вид вооружения считается самым перспективным. В хороших погодных условиях дальность боевого луча А-60 составляет 1500 км. Он эффективен для уничтожения баллистических ракет, вражеских самолетов, танков и систем противовоздушной обороны. Как планируют российские ученые, усовершенствованным оружием в скором будущем будут комплектовать системы противоракетной обороны Российской Федерации.

Лазеры в искусстве

При упоминании о лазерах, у многих возникают ассоциации с известным фильмом «Звездные войны». Именно там впервые появилась идея применения лучевых винтовок, пистолетов и мечей. Позже подобное вооружение позаимствовали разработчики различных компьютерных игр.

Ярким примером может стать ролевая игра «Скайрим». Тому, кто побывал в виртуальном мире «Скайрима», хорошо знакомо двемерское лучевое оружие. Введя определенный мод для дальнейшего прохождения игры, можно экипироваться лучевым одноручным мечом, секирой, топором или кинжалом.

Военные специалисты отмечают, что в последнее десятилетие, при разработке концепции современных войн, в странах блока НАТО все большее значение придается созданию принципиально новых видов оружия. Его отличительной чертой является поражающее действие на людей, не приводящее, как правило, к смертельным исходам у пораженных.

К этому виду относят оружие, которое способно нейтрализовать или лишать противника возможности вести активные боевые действия без значительных безвозвратных потерь живой силы и разрушений материальных ценностей. К возможному оружию на основе новых физических принципах, прежде всего, нелетального воздействия, можно отнести следующие виды оружия:

    лазерное оружие;

    оружие электромагнитного импульса;

    источники некогерентного света;

    средства радиоэлектронной борьбы;

    СВЧ оружие;

    метеорологическое, геофизическое оружие;

    инфразвуковое оружие;

    биотехнологические средства;

    химическое оружие нового поколения;

    средства информационной борьбы;

    психотропное оружие;

    парапсихологические методы;

    высокоточное оружие нового поколения (интеллектуальные боеприпасы)

    биологическое оружие нового поколения (включая психотропные средства).

Новые средства вооруженной борьбы, по мнению военных специалистов, будут использоваться не столько для ведения военных действий, сколько для того, чтобы лишить противника возможности активного сопротивления за счет поражения его наиболее важных объектов экономики и инфраструктуры, разрушения информационного и энергетического пространства, нарушения психического состояния населения. Как показал опыт войны, развязанной странами блока НАТО против Югославии в 1999г, этот результат может достигаться широким использованием специальных операций, ударами крылатых ракет воздушного и морского базирования, а также массированным использованием средств радиоэлектронной борьбы.

Лучевое оружие - это совокупность устройств (генераторов), поражающее действие которых основано на использовании остронаправленных лучей электромагнитной энергии или концентрированного пучка элементарных частиц, разогнанных до больших скоростей. Один из видов лучевого оружия основан на использовании лазеров, другим его видом является пучковое (ускорительное) оружие. Лазеры представляют собой мощные излучатели электромагнитной энергии оптического диапазона - квантовые оптические генераторы

Поражающее действие лазерного луча достигается в результате нагревания до высоких температур материалов объекта, приводящее к их расплавлению и даже испарению, повреждению сверхчувствительных элементов, поражению органов зрения и нанесению человеку термических ожогов кожи. Действие лазерного луча отличается скрытностью (отсутствием внешних признаков в виде огня, дыма, звука), высокой точностью, прямолинейностью распространения, практически мгновенным действием.

Применение лазеров с наибольшей эффективностью может быть достигнуто в космическом пространстве для уничтожения межконтинентальных баллистических ракет и искусственных спутников Земли, как это предусматривается в американских планах звездных войн. Лазерное оружие, по мнению специалистов, может быть применено для поражения органов зрения в тактической зоне боевых действий.

Разновидностью лучевого оружия является ускорительное оружие. Поражающим фактором ускорительного оружия служит высокоточный остронаправленный пучок насыщенных энергией заряженных или нейтральных частиц (электронов, протонов, нейтральных атомов водорода), разогнанных до больших скоростей. Ускорительное оружие называют также пучковым оружием.

Объектами поражения могут быть, прежде всего, искусственные спутники Земли, межконтинентальные, баллистические и крылатые ракеты различных типов, а также различные виды наземного вооружения и военной техники. Весьма уязвимым элементом перечисленных объектов является электронное оборудование. Не исключается возможность интенсивного облучения ускорительным оружием живой силы противника. Согласно американским источникам, существует возможность интенсивного облучения ускорительным оружием из космоса больших площадей земной поверхности (сотен квадратных километров), которое приведет к массовому поражению расположенных на них людей и других биологических объектов

Радиочастотное оружие - средства, поражающее действие которых основано на использовании электромагнитных излучений сверхвысокой (СВЧ) или чрезвычайно низкой частоты (ЧНЧ). Диапазон сверхвысоких частот находится в пределах от 300 МГц до 30 ГГц, к чрезвычайно низким относятся частоты менее 100 Гц.

Объектом поражения радиочастотным оружием является живая сила, при этом имеется в виду известная способность радиоизлучений сверхвысокой и чрезвычайно низкой частоты вызывать повреждения (нарушения функций) жизненно важных органов и систем человека - таких, как мозг, сердце, центральная нервная система, эндокринная система и система кровообращения.

Радиочастотные излучения способны также воздействовать на психику человека, нарушать восприятие и использование информации об окружающей действительности, вызывать слуховые галлюцинации, синтезировать дезориентирующие речевые сообщения, вводимые непосредственно в сознание человека,

Инфразвуковое оружие - средства массового поражения, основанные на использовании направленного излучения мощных инфразвуковых колебаний с частотой ниже 6 Гц.По данным иностранных источников, такие колебания могут воздействовать на центральную нервную систему и пищеварительные органы человека, вызывают головную боль, болевые ощущения во внутренних органах, нарушают ритм дыхания.

При более высоких уровнях мощности излучения и очень малых частотах появляются такие симптомы, как головокружение, тошнота и потеря сознания. Инфразвуковое излучение обладает также психотропным действием на человека, вызывает потерю контроля над собой, чувство страха и панику. Перспективной в военном смысле считается разработка возможностей биологического воздействия радиочастотного и инфразвукового излучений на человека. Полученные в США результаты показывают, что пороговое значение для плотности энергии, вызывающее «радиозвук», составляет для человека около 10 мкДж/см при длительности импульса 20 мкс. В целях военного использования предполагается синтезирование речевых сообщений, вводимых непосредственно в сознание человека.

Установлено, что сильное СВЧ- излучение может действовать как стрессовый фактор, влияющий на регуляторные системы. При воздействии на организм «радиозвука» отмечается нарушение восприятия, переработки и хранения информации, что может отразиться на поведении и психике человека. Использование «радиозвука» представляется перспективным для проведения крупномасштабных психологических операций.

Геофизическое оружие - принятый в ряде зарубежных стран условный термин, обозначающий совокупность различных средств, позволяющих использовать в военных целях разрушительные силы неживой природы путем искусственно вызываемых изменений физических свойств и процессов, протекающих в атмосфере, гидросфере и литосфере Земли.

В США и других странах НАТО делаются также попытки изучать возможность воздействия на ионосферу, вызывая искусственные магнитные бури и полярные сияния, нарушающие радиосвязь и препятствующие радиолокационным наблюдениям в пределах обширного пространства. Изучается возможность крупномасштабного изменения температурного режима путем распыления веществ, поглощающих солнечную радиацию, уменьшения количества осадков, рассчитанного на неблагоприятные для противника изменения погоды (например, засуху). Разрушение слоя озона в атмосфере предположительно может дать возможность направить в районы, занимаемые противником, губительное действие космических лучей и ультрафиолетового излучения Солнца.

Термин «геофизическое оружие» отражает, по существу, одно из боевых свойств ядерного оружия - оказание влияния на геофизические процессы в направлении инициирования их опасных последствий для войск и населения. Иными словами, поражающими (разрушительными) факторами геофизического оружия служат природные явления, и роль их целенаправленного инициирования выполняет главным образом ядерное оружие.

К геофизическому оружию можно отнести средства, способные вызвать такие изменения свойств и процессов, протекающих в твердой, жидкой и газообразной оболочках Земли, которые приводят к воздействию на население разрушительными силами неживой природы. Преднамеренное воздействие на атмосферные процессы связывают с понятиями метеорологического и климатического оружия (Березкин Г.А.,1998).

Метеорологическое оружие применялось во время войны во Вьетнаме в виде засевов переохлажденных облаков микрокристаллами йодистого серебра. Назначение этого вида оружия - целенаправленное воздействие на погоду в целях снижения возможностей противника по обеспечению его потребностей в продовольствии и других видах сельхозпродукции.

Климатическое оружие представляет собой средства воздействия в военных целях на местный или глобальный климат планеты и предназначено для многолетнего изменения характерных режимов погоды на определенных территориях. Даже небольшие изменения климата могут серьезно повлиять на экономику и условия жизни целых регионов - снижению урожайности важнейших сельскохозяйственных культур, резкому росту заболеваемости населения.

В настоящее время теоретически обоснованы способы (путем проведения подземных взрывов) искусственного инициирования извержений вулканов, землетрясений, волн цунами, сходов снежных лавин, селей и оползней, других стихийных бедствий, способных приводить к массовым потерям среди населения. Эффективным, с военной точки зрения, является озонное оружие. Его применение приводит к истощению слоя озона и повышает интенсивность ультрафиолетового облучения поверхности Земли. Это вызывает повышение заболеваемости раком кожи, снежной слепотой, снижает урожайность сельскохозяйственных культур.

Радиологическое оружие - один из возможных видов оружия массового поражения, действие которого основано на использовании боевых радиоактивных веществ. Под боевыми радиоактивными веществами понимают специально получаемые и приготовленные в виде порошков или растворов вещества, содержащие в своем составе радиоизотопы химических элементов, обладающие ионизирующим излучением.

Действие радиологического оружия может быть сравнимо с действием радиоактивных веществ, которые образуются при ядерном взрыве и загрязняют окружающую местность. В результате интенсивного и длительного излучения боевые радиоактивные вещества могут вызывать губительные по следствия для животного и растительного мира.

Основным источником получения боевых радиоактивных веществ служат отходы, образующиеся при работе ядерных реакторов. Они могут быть также получены путем облучения заранее подготовленных веществ в ядерных реакторах или боеприпасах. Бурное развитие ядерной энергетики в последние годы и достижения физики высоких энергий предоставили возможность развитым в индустриальном отношении государствам получать радиоактивные вещества с различными периодами распада в таких количествах, которые позволяют, по мнению военных специалистов США, широко применять радиологическое оружие в будущих войнах и создавать загрязнение на необходимый период.

Применение боевых радиоактивных веществ может осуществляться с помощью авиационных бомб, распылительных авиационных приборов, беспилотных самолетов, крылатых ракет и других боеприпасов и боевых приборов

Исследования западных специалистов по разработке новых видов боевых отравляющих веществ, временно выводящих из строя, направлены на изучение психотропных пептидов, а также депрессантов и стимуляторов, которые не поддаются индикации имеющимися приборами химической разведки, а средств защиты от них пока не имеется.

Значительную опасность при использовании в военных целях представляет генная инженерия с ее возможностями по созданию множества ранее неизвестных биологических средств, вызывающих поражение человеческого организма.

Большинство из перечисленных средств были объединены в новую группу средств вооруженной борьбы, получивших название «оружие нелетального действия», которое предполагается использовать для поражения людей, техники и окружающей среды. Следует отметить, что страны, входящие в блок НАТО, активно применяли указанный новый вид оружия в ходе локальных вооруженных конфликтов - в Персидском заливе, Югославии, Сомали, Гаити, Боснии. Не следует сбрасывать со счетов и возможность применения нелетального оружия террористическими методами.

Медицинские последствия применения перечисленных новых перспективных видов оружия в настоящее время не поддаются количественной оценке, однако возможность их использования и характер последствий должны быть учтены при планировании мероприятий по медицинской защите населения в военное время. В этих условиях актуальными становятся задачи по разработке и внедрению средств и способов защиты от оружия с нетрадиционными поражающими факторами.

Вейнтрауб взялся за штурвалы и прильнул к окуляру видоискателя.

— Начинаю слева, — сказал он.

Мюленберг видел в бинокль маленькое стадо, медленно двигавшееся к западу. Внезапно две овцы, передние, судорожно закинув голову кверху, метнулись назад, расталкивая остальных, и вытянулись неподвижно на земле. Оставшиеся панически бросились в стороны, затем устремились вперед. Невидимый луч настиг их одну за другой.

Ю. Долгушин, «Генератор чудес»

Римляне осаждали Сиракузы два года, но немногочисленный гарнизон города сражался храбро, а нападающие то и дело сталкивались с неприятными сюрпризами. Едва ли не главной надеждой греков был их выдающийся соотечественник — Архимед. Ему приписывают создание множества механизмов, повергавших в трепет нападающих, но наиболее известна история о том, как он при помощи зеркал сжег римские корабли. Правда это или нет — нам с вами еще предстоит разобраться, но можно уверенно утверждать, что идея поражения врага не снарядом, а «чистой» энергией с тех пор стала популярной. Посмотрим, как она эволюционировала за две с лишним тысячи лет.

Архимед — правда или вымысел?

Вот таким зеркальцем Архимед сжег флот римлян? Господин художник, идите учить оптику.

Существует широко известная легенда о первом практическом применении лучевого оружия, которое состоялось в 212 году до н.э. во время осады Сиракуз римлянами. Согласно ей, Архимед смог создать зеркальный гелиоконцентратор, при помощи которого на расстоянии полета стрелы был сожжен римский флот.

Здесь стоит отметить, что с момента первых упоминаний, не изобилующих деталями и носящих сугубо «декоративный» характер, легенда обросла весьма подозрительными подробностями. Согласно одним, Архимед использовал параболическое зеркало. Другие же сводились к тому, что было задействовано множество плоских зеркал, наведенных так, чтобы их отраженные пучки света совпали на поджигаемой поверхности. Кто-то утверждал, что зеркала наводили греческие солдаты на стенах Сиракуз, а кто-то склонялся к идее жестко закрепленных на подвижной раме зеркал, наводимых одним человеком.

Клавдий Гален, античный медик

Лукиан из Самосаты. Судя по хитрому виду, он сам придумал байку про Архимеда.

В принципе, с точки зрения геометрической оптики второй вариант — частный случай первого, поскольку параболоид вращения можно представить как предельный переход такой системы зеркал при диаметре отдельных зеркал, стремящемся к нулю, и их количестве, стремящемся к бесконечности. Но вариант с параболическим зеркалом вообще не выдерживает критики, поскольку, во-первых, параболоид вращения с фокусным расстоянием в сотню метров даже современными средствами создать затруднительно, а во-вторых, оптические свойства параболы были открыты и описаны в III веке нашей эры греческим математиком Паппом Александрийским. Это, кстати, весьма важный аргумент против гипотезы «параболического концентратора».

Византийский математик и архитектор VI века Анфимий в сочинении «О чудесных механизмах» рассмотрел вариант с большим количеством плоских зеркал, отражающих свет в одну точку. Число зеркал, необходимых для воспламенения дерева, он определил равным 24. Однако простейший подсчет, основанный на знании максимальной удельной мощности солнечного излучения на уровне моря (0,1 Вт/см²), показывает, что при двадцати четырех зеркалах будет достигнута максимальная удельная мощность 2,4 Вт/см². Даже если зеркала будут идеальными, источник энергии — точечным, поверхность цели — абсолютно черной, а сама цель — неподвижной, ее нагрева в условиях естественного охлаждения не будет достаточно для воспламенения дерева (300°С). Заметьте, что речь при этом идет о наиболее благоприятных условиях, не учитывающих множества факторов, значительно снижающих эффективность устройства.

На заметку: хорошим примером тепловой модели проекта Анфимия может служить обычный электрический паяльник с мощностью нагревателя 25 Вт. Площадь его нагреваемой поверхности составляет порядка 10 см² (примерно та же удельная мощность). И при этом максимальная температура его поверхности (жало) достигает всего лишь 200-220°С.

Жорж-Луи Леклер де Бюффон

Первым естествоиспытателем, пытавшимся реализовать предложение Анфимия, стал немецкий математик Атанасиус Кирхер. В изданной в 1674 г. книге «Великое искусство света и тени» он рассказывает, что совмещал отражения солнца от пяти плоских зеркал и получил значительный нагрев, хотя и недостаточный для зажигания дерева.

В 1747 г. Бюффон опубликовал труд, названный прямолинейно и бесхитростно: «Изобретение зеркал для воспламенения предметов на больших расстояниях». Использовав весьма оригинальную методику, он определил «отношение действие света, отраженного плоским зеркалом, к действию неотраженного света» как 5 к 13. Составной гелиоконцентратор, построенный механиком Пассманом по указаниям Бюффона, состоял из 168 плоских стеклянных зеркал. С его помощью Бюффону удалось воспламенить просмоленную сосновую доску на расстоянии 150 футов (46 метров) в яркий солнечный день.

Разумеется, считать подобный эксперимент реконструкцией, подтверждающей легенду, нельзя ни в коем случае, поскольку стеклянные зеркала соответствующего качества были недоступны Архимеду так же, как Бюффону был недоступен, к примеру, мобильный телефон. Но даже при всех ухищрениях Бюффону не удалось достигнуть дальности, которая бы сделала «лучевое оружие» Архимеда тактически выгодным. На дистанции в полсотни метров гораздо проще и эффективнее расстрелять флот из баллист, не оставив штурмующим ни единого шанса.



Легенда о сожженном римском флоте привлекла внимание таких выдающихся ученых, как Иоганн Кеплер и Рене Декарт. Именно они стали первыми «разрушителями» этой легенды, попытавшимися доказать ее несостоятельность математически. С их доказательством, разумеется, можно поспорить, поскольку оно было схоластическим и не рассматривало понятия достаточной для воспламенения удельной мощности .

Легенда эта и по сей день будоражит умы экспериментаторов. Неоднократно проводились эксперименты с сохранением исторического правдоподобия, в ходе которых объекты то загорались, то дымили, то просто нагревались. Результаты этих реконструкций, как правило, не подтверждались документально, а существовали лишь в периодических изданиях далеко не научного формата.

Проблема таких экспериментальных проверок состоит в том, что достоверно воспроизвести обстоятельства, имевшие место более чем две тысячи лет назад, невозможно. Равно как и невозможно оценить, насколько зеркала реконструкций соответствуют зеркалам тех времен.

Единственная документально подтвержденная реконструкция была проведена известной программой «Разрушители легенд». В выпуске 16 (сезон 2) было показано, что на небольшом расстоянии и при использовании современной технологии изготовления больших сборных гелиоконцентраторов воспламенить дерево возможно. Однако с учетом технологии времен Архимеда легенда получила статус опровергнутой.

После выхода в эфир выпуска 16 в редакцию программы посыпались письма возмущенных зрителей, утверждавших, что проверка была некорректной. Это послужило причиной выпуска 46 (сезон 3), при подготовке к которому было организовано соревнование между телезрителями, готовыми предоставить свой вариант конструкции зеркала. Однако окончательный вердикт остался неизменным с поправкой «крайне непрактично и неэффективно по сравнению с существующими на то время видами вооружений».

От легенд — к проектам

Что интересно, упомянутый выше Бюффон, невзирая на полученные результаты, не строил иллюзий относительно боевого применения гелиоконцентратора. Он видел в этом устройстве только источник тепла, необходимый для «чистых» химических опытов. Будучи естествоиспытателем, то есть закоренелым практиком, Бюффон понимал, что подобное устройство по всем параметрам проиграет не только артиллерии, но и пехотному стрелковому оружию.



Начало ХХ века дало старт множеству безумных проектов, касающихся популярной тогда идеи «лучей смерти». Под ними подразумевалось все что угодно — от таинственных радиочастот, передающих человеческому организму приказ умереть, до не менее таинственной «передачи электроэнергии без проводов», выкашивающей наступающие порядки вражеской пехоты почище марсианского «теплового луча». Фантазия изобретателей, опьяненных недавним открытием радиоволн, не знала ни меры, ни границ.



Петербургский профессор Михаил Филиппов утверждал, что нашел способ передавать на большие расстояния энергию ударной волны химического взрыва при помощи электромагнитной волны. Сейчас любому школьнику понятна абсурдность таких заявлений, но Филиппова, похоже, приняли настолько всерьез, что отправили на тот свет, не дожидаясь практических результатов.



Итальянец Джулио Уливи, талантливо выдающий себя за химика и изобретателя, предложил британскому адмиралтейству собственную разработку дистанционного подрыва мин какими-то неведомыми F-лучами, заломив за «кота в мешке» цену в пять миллионов фунтов. Адмиралтейство не сочло возможным приобретение такого сомнительного «ноу-хау», но предоставило итальянцу возможность продемонстрировать его на деле. В итоге подлог был вскрыт, Уливи был с позором изгнан в Италию, где и продолжил свой «F-лучевой лохотрон», напирая на то, что свои лучи он назвал в честь итальянского адмирала Форнани, весьма популярного на тот момент. Однако итальянская полиция оказалась нечувствительной к дешевому патриотизму, вскрыла лабораторию Уливи, провела обыск и обнаружила веские улики, свидетельствующие о том, что владелец лаборатории — обычный проходимец.



Развитию идеи «лучевого оружия» немало поспособствовал выдающийся ученый и не менее выдающийся мистификатор Никола Тесла, подкинувший современным конспирологам немало пищи для ума. Незадолго до смерти Тесла объявил, что располагает технологией лучевого оружия колоссальной разрушительной силы. Однако никаких сведений, могущих пролить свет на его возможное устройство, Тесла не сообщил.



Гульельмо Маркони

Никола Тесла

Гарри Гринделл Мэтьюз, британский электротехник, выбил у государства неплохой куш на разработку собственных «лучей» — 25 тысяч фунтов. Однако никаких существенных результатов за десять лет работы он так и не предоставил. Это повлекло за собой грандиозный скандал, в ходе которого Мэтьюз безуспешно пытался шантажировать Великобританию, предлагая свои услуги Франции. Разумеется, в суете скандала все документы, якобы содержащие описание работ Мэтьюза, неведомым образом пропали.



Поиски радиочастот, несущих смерть, долго и безуспешно приписывали Гульельмо Маркони. Эти идиотские слухи настолько злили изобретателя радиосвязи, что он неоднократно выступал с опровержением. Однако сторонникам «злого гения» Маркони настолько импонировала идея поиска им «лучей смерти», что они совершенно не воспринимали всерьез опровержений и протестов их кумира. В конце 1935 года Маркони в своем очередном интервью, касаясь пресловутых лучей, указывал исключительные возможности, которые таят в себе применение дециметровых волн в военном деле. Но он имел в виду не «лучи смерти», а наведение на цель управляемых снарядов при помощи остронаправленного луча.



Всеобщее поветрие на почве разнообразных «лучей смерти» продолжалось почти сорок лет. Множество аферистов и шарлатанов неплохо нагрели руки на предвоенной истерии, когда многие государства больше всего на свете боялись упустить шанс заполучить в свои руки очередное «супероружие», позволяющее диктовать свою волю миру. Никакие соображения здравомыслящих ученых не брались в расчет, поскольку запрашиваемые изобретателями суммы были ничтожными по государственным меркам, а выгода могла стать неизмеримо большей.

Хорошо потрудились и представители военных разведок крупных государств, создавая «на коленке» очередной безумный проект и аккуратно «впаривая» его представителям вражеских разведок. Такие действия вели к неизбежному распылению научного потенциала вероятного противника, поскольку на выявление «пустышки» иной раз уходили десятки и даже сотни тысяч человеко-часов высококвалифицированного персонала.

От проектов — к фантастике

Вот откуда Лукас узнал, что ужасные лучи, сеющие смерть, можно разглядеть сбоку.

В качестве грозной разрушительной силы «тепловой луч» выходит на литературную сцену только в 1897 году. Герберт Уэллс был прекрасным литератором, но его естественнонаучные познания не простирались дальше биологии. Поэтому описание принципа действия марсианского теплового оружия не выдерживали никакой критики даже на момент написания «Войны миров». Впрочем, даже в областях, весьма близких к биологии, автор «Человека-невидимки» допустил колоссальный ляп, поскольку в конце XIX века вполне можно было сделать единственно правильный вывод, что невидимый человек окажется абсолютно слеп. Но не будем излишне придирчивыми к великолепным произведениям, которыми зачитывалось много поколений мальчишек и девчонок.

В 1925 году американский химик и писатель Никцин Уилстоун Диалис (Nictzin Wilstone Dyalhis) в рассказе When the Green Star Waned впервые упомянул бластер — индивидуальное энергетическое оружие. Точнее, он назывался Blastor (именно так, с уважительной большой буквы). Каких-либо упоминаний о принципе действия этого «бластора» в рассказе нет, но, судя по описанию действия, это лучевое оружие. А в привычном нам написании бластер впервые промелькнул через пятнадцать лет в рассказе Coventry Роберта Хайнлайна.

Рассуждать об устройстве и принципе действия бластера совершенно немыслимо, поскольку под этим словом подразумевается обширный класс индивидуального стрелкового оружия, не использующего кинетическую энергию снаряда. Сюда входят и квантовые генераторы, и плазменные ускорители, и электростатические разрядники направленного действия, и неведомые дезинтеграторы, разрушающие излучением межмолекулярные и даже внутримолекулярные связи цели. Существуют и описания бластеров, о принципе действия которых остается только догадываться.

Это интересно: в «Дюне» Фрэнка Герберта лазерные ружья существуют, но никто их обычно не применяет. Дело в том, что практически все используют щиты — и индивидуальные, и закрывающие целые здания, а попадание луча в поле щита приводит к ядерному взрыву с вполне понятными последствиями.

Современные иллюстраторы подошли бы к вопросу совсем по-другому.

В 1927 году Алексей Толстой пишет эпохальный «Гиперболоид инженера Гарина». Пожалуй, впервые лучевое оружие обзавелось хоть каким-то внятным описанием. Согласно ему, тепловой луч формировался двумя конфокальными параболическими отражателями (вариация схемы Кассегрена ), концентрирующими тепловое излучение сгорающих угольных пирамидок. Если не считать некорректного названия параболических отражателей гиперболоидами, сама по себе оптическая схема была вполне работоспособной. Невозможность создания такого устройства в реальности состояла в том, что источник тепла не давал и не мог дать параллельного потока ИК-излучения.

В том же 1927 году Александр Беляев написал «Борьбу в эфире» — гротескное произведение, описывающее военное применение разрушительных радиоволн. Роман этот стал прекрасным сплавом иронии, антиутопии и боевика — будущее, где утопическая коммунистическая Европа противостоит комично-карикатурному, «буржуинскому» капитализму Америки, война высокоточных машин, управляемых на расстоянии, волновые барьеры на границах государств.

В фантастике, как и следовало ожидать, «лучи смерти» оказались гораздо более живучими, чем в псевдонаучных проектах периода «радиолучевого бума». В 1939 году Юрий Долгушин написал свой «Генератор чудес», значительную долю которого составляет история немецкого изобретателя, создавшего установку для передачи электроэнергии без проводов на расстоянии. Однако военное руководство фашистской Германии, разумеется, не преминуло превратить это изобретение в оружие, убивающее людей на расстоянии. Успех романа был настолько велик, что Долгушин в 1959 году выпустил второй его вариант, переработанный с учетом веяния времени.

От фантастики — к играм

Перечислить все виды лучевого оружия в играх совершенно невозможно, поскольку какой-либо внятной классификации разработчики не придерживаются. Поэтому пройдемся по самым примечательным образцам, которыми были вооружены солдаты виртуального фронта.

Command & Conquer 3. Вместе, говорят, и батьку бить легче.

Death Track. Неспортивное поведение иногда предусмотрено правилами.

Первое лазерное оружие, с которым мне довелось столкнуться в игре, фигурировало в незабвенной UFO: Enemy Unknown , созданной всемирно известной Microprose. Кроме весьма полезного свойства обходиться без боеприпасов лазерное оружие обладало очень высокой рентабельностью в производстве. Именно производство лазерных винтовок (впрочем, как и бронежилетов) давало мне возможность выйти на самоокупаемость и не зависеть от внешнего финансирования.

В Command & Conquer появились новые виды лучевого оружия. Во-первых, ионная пушка на спутнике. Ее поражающая способность была средней силы, но точечные удары в правильное время могли изменить ход боя. Другое оружие, куда более важное для прохождения, — Обелиск света , который чуть позже, во Второй войне, обзавелся младшим собратом — лазерной турелью , не требующей энергоснабжения. Ну а в Третьей войне лазерные технологии достигли своего пика. Появились лучевые пушки, лазерные танки, истребители и даже багги.

В Total Annihilation можно было строить дешевые и достаточно эффективные лазерные башни — каждая вполне могла перед кончиной записать на свой счет пяток куда более дорогих единиц. Радиус действия не такой большой, но его можно было увеличить, если поставить установку на горке, — в этой стратегии впервые появился полноценный трехмерный ландшафт.

В Empire at War — игре по мотивам саги Джорджа Лукаса — при использовании лазерного оружия учитываются эффекты погоды. В ясную погоду лазеры куда полезнее, чем в дождь: капельки рассеивают энергию, и лучше положиться на ракеты.

Нельзя не вспомнить и Fallout , где рано или поздно Избранный находил alien blaster , не требующий боеприпасов и делавший дальнейшую жизнь нашего героя куда более удобной.



Не остались без лучевого оружия и любители стрельбы от первого лица. Оно встречается во множестве sci-fi боевиков. Даже в F.E.A.R. , который, казалось бы, описывает ближайшее будущее, существует вполне эффективное лазерное оружие. Что уж говорить о таких столпах жанра, как Quake или Unreal . А вот в отечественной игре Venom лазер присутствует, но выполняет вспомогательную функцию — из него очень удобно расстреливать коконы, не тратя на них боеприпасы. Зато в одной из последних научно-фантастических игр — Mass Effect — лучевое оружие не в почете. Причем по совершенно непонятной причине.

Следует заметить, что при виде от первого лица иногда трудно понять, чем лучевое оружие отличается от нелучевого. Так, например, в Red Faction II есть рейлган Magnetic Rail Driver , который крайне мало похож на реально существующий рельсотрон, зато очень неплохо лупит синим лучом через любые преграды. Принцип его действия остается для меня загадкой.

От игр — к реальности

Реальность оказалась гораздо более неповоротлива и жестка, чем вымысел фантастов и фантазия игроделов. Устройства, которые писатели, сценаристы и дизайнеры с такой легкостью вводили в книги, фильмы и игры, оказались нереализуемыми на практике и поныне. Тщетные поиски «лучей смерти» продолжались много лет. Были перепробованы все диапазоны радиоволн — от мириаметровых до микроволн, их мыслимые и немыслимые комбинации, самые экзотические виды модуляции и поляризации — все оказалось безрезультатно. Судя по всему, мать-природа совершенно равнодушно отнеслась к мысли о том, что где-то в глубинах мозга должен быть своеобразный «дистанционный пульт управления», ведающий основными жизненными функциями.

Такая же неудача постигла оружие на основе электростатических разрядников и потоков заряженных или нейтральных микрочастиц (так называемого пучкового оружия). В первом случае причиной стала неуправляемость разряда и непредсказуемость пути его прохождения, а во втором — непроницаемый щит атмосферы, тормозящий частицы до вполне мирных скоростей.



Однако теплового действия электромагнитного излучения, описанного Гербертом Уэллсом и Алексеем Толстым, никто не отменял. Проблема была лишь в том, чтобы сфокусировать поток квантов в параллельный концентрированный пучок. Средствами геометрической оптики этого не удавалось сделать по той простой причине, что не существовало идеального точечного источника.

И вот в самом начале 60-х годов ХХ века был создан источник когерентного излучения оптического диапазона — лазер . Именно он, благодаря особенностям принципа работы и устройства, смог дать практически параллельный поток фотонов с совершенно недосягаемой до этого плотностью потока мощности.

Прохоров, Басов, Таунс. Эти люди создали лазер.

Первый лазер был создан в 1960 году американцем Т. Майманом. Но источник когерентного микроволнового излучения — мазер — появился значительно раньше, в 1954 году. Его создали советские ученые Николай Басов и Александр Прохоров, а параллельно с ними — американский физик Чарльз Таунс. Все они спустя десять лет стали лауреатами Нобелевской премии по физике.

Собственно говоря, и в лазере, и в мазере используется один и тот же принцип. А в чем он состоит, давайте рассмотрим подробнее.



Во мраке лабораторий творятся лазерные таинства.

И лазер, и мазер — аббревиатуры, в которых отражен принцип их действия, усиление при помощи вынужденного излучения . Только в случае лазера первая буква означает «свет», а у мазера — «микроволны».

Как вам наверняка известно, орбитальные электроны атомов могут поглощать и испускать электромагнитные кванты. Электрон, поглотивший квант, переходит в так называемое возбужденное состояние. Находится он в нем крайне короткое время, после чего испускает фотон той же длины волны и возвращается к стационарному состоянию. Если бы можно было заставить возбужденные электроны одновременно испустить фотоны в одном и том же направлении, то получился бы импульс огромной разрушительной силы. Но такая согласованность практически недостижима, если речь идет об обычных энергетических переходах.

Однако существуют вещества, в которых электронные оболочки атомов взаимодействуют между собой таким образом, что появляются так называемые метастабильные уровни. Суть их состоит в том, что далеко не все энергетические переходы разрешены законами квантовой механики. Таким образом, возбужденный электрон может не вернуться на стационарную орбиту, а, потеряв немного энергии на безызлучательный переход, попасть в своеобразную «ловушку» — метастабильный уровень. Переход на стационарную орбиту с него запрещен, поэтому теоретически электрон может находиться в возбужденном состоянии сколь угодно долго. На практике же время жизни электрона в метастабильном состоянии исчисляется миллисекундами, что в миллионы раз больше времени обычного излучательного перехода.

Лабораторный
гелий-неоновый лазер. В нем нет ничего опасного.

Используя метастабильные уровни, мы можем добиться так называемой инверсной заселенности, то есть момента, когда большая часть электронов окажется «живущими» на метастабильных уровнях. Если в этот момент в системе окажется хотя бы один фотон определенной длины волны, то он вызовет лавинообразный «обвал» электронов и высвобождение ими фотонов. Особенность этого процесса состоит в том, что фотон, выбитый другим фотоном, будет иметь в точности ту же частоту, вектор направленности и фазу. То есть эти фотоны будут когерентными .

Но это еще не все. Вынужденное излучение все равно не будет направленным, поскольку невозможно обеспечить наличие одного изначального фотона, движущегося в нужном направлении. Для формирования параллельного пучка излучения используется система двух параллельных зеркал — резонатор . Многократно отражаясь от зеркал, поток когерентных фотонов станет выбивать из метастабильных электронов все новые и новые фотоны, также когерентные им. А фотоны, имеющие другую направленность, быстро покинут рабочее тело лазера и не повлияют на дальнейший процесс.

Для отвода энергии от лазера одно из зеркал делается полупрозрачным. Именно через него и проходит тот самый широко известный луч лазера .



Так в общих чертах устроен простейший рубиновый лазер. Светим зеленым светом, получаем красный.

Технически устройство твердотельного лазера весьма просто. Цилиндрический кристалл рабочего тела помещен между двумя зеркалами резонатора и находится в одном из фокусов эллиптического трубчатого отражателя . В другом его фокусе расположена импульсная лампа накачки . Вот, собственно, и вся конструкция. Однако ее кажущаяся простота обманчива. Для устойчивой генерации кристалл должен быть оптически безупречным, зеркала — строго параллельны, все оптические поверхности — идеально отшлифованы. Для лазеров был даже введен особый класс чистоты поверхности. Именно поэтому лазер — это очень точное и хрупкое устройство, абсолютно не переносящее вибрации, влажности и пыли. И именно по этой причине лазеры долго оставались лабораторными и промышленными приборами, непригодными для каких-то военных целей.



Мазер использует тот же принцип накачки и инверсии населенности уровней, но устроен он иначе. В нем нет зеркал и лампы накачки, а их функцию выполняют объемные резонаторы и генераторы микроволнового диапазона. Мазеры так и не получили широкого практического применения. Их используют в физических экспериментах, космической связи и метрологии.

Лазеры на практике

Лазерная резка листового металла. Без защитных очков сюда лучше не смотреть.

Свойства лазерного излучения позволили лазеру проникнуть во многие области человеческой деятельности. Промышленность, медицина, косметология, разнообразные сканеры и проекторы, связь, информационные технологии — этот список далеко не полон, а полный займет слишком много места.

Гранатомет «Карл Густав» с лазерным прицелом. Промах исключен.

Режущие свойства луча используются в металлообработке, электронике и хирургии. Непревзойденная когерентность и монохроматичность, позволяющая фокусировать луч до размеров порядка длины волны, — в информатике, параллельность пучка — в связи, охранных системах и бесконтактном считывании информации штрих-кода.

По мере совершенствования технологии, создания разнообразных конструкций, видов рабочего тела и методов накачки лазеры приобрели достаточную надежность, устраивающую и военных. Однако о непосредственном боевом применении энергетических свойств луча на сегодняшний день не может быть и речи. В современных армиях широко используются лазерные дальномеры, локаторы, целеуказатели, линии связи — то есть вспомогательные средства, позволяющие повысить точность существующего оружия.

Есть, конечно, возможность использования лазеров как нелетального средства, ослепляющего живую силу противника. Однако международными соглашениями это оружие, разрабатываемое и используемое в явном виде, запрещено. Впрочем, запрет этот достаточно размыт, так что существует множество лазеек для его использования. Впрочем, системы, не вызывающие постоянной слепоты, под этот протокол не попадают. Так, например, лазерным импульсом можно временно ослепить снайпера и помешать ему сделать прицельный выстрел.

Используются системы лазерного подавления и против высокоточного оружия, наводимого лазерной подсветкой цели. При регистрации подсветки в ее направлении генерируется мощный короткий импульс, выводящий из строя блок наведения управляемой ракеты. Однако против ракет с системой наведения «поляризационный крест», которые направляются без непосредственной подсветки цели, такая система окажется бессильной.

Это интересно: лазерный дальномер современного танка вполне может быть использован как импровизированное оружие непосредственного поражения. Для выведения из строя оператора портативной ПТУР иногда достаточно замерить по нему дальность и выжечь лазерным импульсом сетчатку глаз.

При разгоне демонстраций гражданских лиц и подавлении массовых беспорядков пригодились и микроволновые когерентные источники. Интенсивно поглощаясь кожей человека, микроволновое излучение создает эффект непереносимого жжения, не оказывая при этом существенного вреда здоровью. Такова, например, Active Denial System (ADS), использующая радиоизлучение частоты порядка 100 ГГц и разработанная для охраны посольств. Разработчики не отрицают, что эту же систему можно без особых переделок применять для подавления массовых беспорядков. Однако такие устройства слишком громоздки и неэффективны, чтобы использовать их на поле боя.

Плюсы и минусы лучевого оружия

Свет, как и любое другое электромагнитное излучение, распространяется с максимально возможной скоростью. Это в совокупности с прямолинейностью распространения делает лазер непревзойденным по простоте наведения, точности и скорости атаки оружием. Но современные технологии позволяют создавать высокоточное оружие класса «выстрелил и забыл», которое самостоятельно наводится на цель, отслеживает ее перемещение и даже осуществляет маневрирование, препятствующее сбитию.

Вроде бы, по слухам, это несуразное чудовище — лазерное ружье. Если и не зажарит, то уморит смехом.

Вот так, по мнению дизайнеров, выглядит лазерное оружие пехотинца будущего. Что ж, вполне правдоподобно по размерам.

Классический лазер не требует боеприпасов, для него достаточно электропитания. Правда, если учесть массу аккумуляторов, необходимых для его работы, или массу соответствующего по характеристикам электрогенератора, то окажется, что эффективная нагрузка такой системы намного хуже, чем для ствольной или реактивной артиллерии.

У лазера нет отдачи, сбивающей прицел последующих выстрелов. Но опять же системы высокоточного оружия тоже нечувствительны к отдаче, поскольку точное прицеливание ракеты производится уже после ее пуска.

Лазерный импульс не подвержен сносу ветром, кориолисовой силе и прочим неприятностям, отравляющим жизнь снайперам и артиллеристам. Но, с другой стороны, лазер малоэффективен в условиях тумана, интенсивных тепловых восходящих потоков, запыленности, густой растительности.

Боевому применению мощных лазеров препятствуют и другие причины. Сам по себе луч, несмотря на его исключительные энергетические показатели, не способен пробивать любую преграду, как это показывают в фантастических фильмах. Испаренный материал преграды создает непрозрачное облако высокотемпературной плазмы, которое и принимает на себя энергию луча. То есть для пробития толстой брони требуется длительное импульсное воздействие, чтобы плазма испаренного участка успевала остывать и рассеиваться. Разумеется, удерживать луч на атакуемом участке брони в условиях боя совершенно нереально. Можно, впрочем, успешно поражать живую силу противника, но эффективность такого метода, учитывая диаметр луча, сектор обстрела, стоимость лазера и сложность его обслуживания, будет намного ниже, чем у привычного огнестрельного оружия.

Киловаттный лазер на армейском внедорожнике. Выглядит внушительно, но не вызывает доверия.

На картинках всегда удается сбить лазером что угодно, от баллистической ракеты до артиллерийского снаряда.

Это миф: от сколь угодно мощного лазерного луча можно защититься зеркалом. На практике эта красивая идея не подтверждается. Дело в том, что любое зеркало неидеально — микроскопические дефекты начинают поглощать энергию и стремительно распространяются по всей поверхности. Этому также будут содействовать пыль и грязь, неизбежные в боевых условиях.

На пути создания мощных боевых лазеров, пригодных для действия в атмосфере, стоит еще одно препятствие — так называемая самофокусировка (самоканализация) луча . Воздух в канале луча ведет себя крайне нелинейно и может образовать своеобразные «линзы», сужающие луч до ситуации «лазерного пробоя», то есть плазменной искры, дальше которой луч уже не распространяется (высокотемпературная плазма непрозрачна для электромагнитных волн). Внешне это выглядит как трескучая цепочка очень ярких искр, бегущая вдоль луча по направлению к лазеру. Можно, конечно, использовать параболический концентратор, фокусирующий лазерное излучение на цели, но его размеры, хрупкость и открытость сделают систему превосходной мишенью для атаки.



На сегодняшний день существует некоторое количество исследовательских программ, касающихся тактического использования лазерного оружия. Все они находятся на разных стадиях готовности, но ни одна из них пока не предоставила эффективного прототипа лазерного оружия, пригодного для боевого использования. И все они работают над тяжелыми боевыми платформами наземного, морского и воздушного базирования, предназначенными для защиты от атак высокоточного оружия и боевых блоков МБР.

Так Starfire выглядит сверху. Осторожно, на нас направлен углекислотный лазер!

Индивидуальное лучевое оружие, способное уничтожить вражеского солдата, пока что остается уделом фантастики. Причина этого — крайне низкий КПД лазера и слишком большая масса системы его энергопитания. На каждый джоуль излученной энергии потребуется затратить сотни и даже тысячи джоулей энергии аккумуляторов. К примеру, свинцовый автомобильный аккумулятор емкостью 60 Ач способен отдать порядка двух мегаджоулей энергии за несколько часов. С точки зрения лазерного оружия это неприемлемо, поскольку боевой импульс должен нести энергию хотя бы в несколько сотен джоулей. А при скорострельности хотя бы один выстрел в секунду это выльется в мощность сотен ватт. С учетом ничтожного КПД мощного лазера получится, что потребуется мощность питания в десятки киловатт.

Возможно, прорыв в этой области осуществится при появлении дешевых, компактных, легких и энергоемких источников питания, но пока никаких тенденций к этому не прослеживается. Но и появление таких источников не решит проблемы охлаждения лазера — вся энергия, не ушедшая с лазерным импульсом, будет выделена в виде тепла.

Лазеры — к бою!

Боинг-747 с лазерным оружием на борту

Как мы уже с вами выяснили, ручным бластерам, лазерным винтовкам и прочему лучевому оружию индивидуального использования есть место только в фантастических романах. Разрабатываемые в данное время боевые лазеры громоздки и требуют огромных затрат энергии. Чаще всего используются эксимерные лазеры, при которых энергия для выстрела выделяется в ходе химической реакции. Таким образом, проблема своеобразных боеприпасов существует и здесь. Основные направления работ связываются с корабельными, авиационными и крупными наземными системами.

Демонстрационный вариант системы THEL.

Лазерная система THEL (Tactical High Energy Laser), созданная Northrop Grumman и известная также как Nautilus laser system, не обладает мощностью ATL, но может быть размещена на наземных мобильных платформах (MTHEL). В основе этой системы — тоже газовый лазер, но дфтор-дейтериевый. Ее задача — уничтожение высокоточного реактивного оружия и артиллерийских снарядов путем их нагрева до температуры детонации заряда или топлива. Пока что эта система существует в виде ACTD (Advanced Concept Technology Demonstrator), то есть тоже находится в демонстрационном состоянии. Перспективы ее достаточно хороши, поскольку уже на данном этапе стоимость одного «выстрела» оценивается всего лишь в 3000 долларов. Такая сумма делает THEL вполне конкурентоспособной системой. Однако, несмотря на это, в 2006 году программа была свернута по причине избыточной громоздкости прототипа и отсутствия путей снижения ее габаритов.


Советская летающая лаборатория 1А

Система HELLADS проводит калибровочный импульс. Еще не опасно, но уже страшновато.

В СССР также проводились испытания лазерного оружия. В середине 1970-х гг. Таганрогскому машиностроительному заводу им. Георгия Димитрова было поручено создание специального авиационного комплекса А-60 (1А) — летающей лаборатории для испытания лазерного оружия на базе транспортного самолета ИЛ-76МД. Базовая модель самолета подверглась серьезной модификации. В носовой части вместо штатного метеорадара был установлен бульбообразный обтекатель с аппаратурой целеуказания. По бокам фюзеляжа под обтекателями располагались турбогенераторы дополнительной энергосистемы, обеспечивающей работу специального комплекса. В связи с большим энергопотреблением также пришлось заменить штатную ВСУ. Створки грузового люка были сняты, а сам люк зашит. Чтобы не ухудшать аэродинамику самолета еще одним обтекателем, излучатель лазера сделали убирающимся. Верх фюзеляжа между крылом и килем был вырезан и заменен створчатым люком, состоящим из нескольких сегментов. Они убирались внутрь фюзеляжа, после чего выдвигалась турель излучателя.

Первый полет изделия 1А состоялся 19 августа 1981 года, но вскоре самолет сгорел дотла на военном аэродроме ГК НИИ ВВС СССР. Как выяснило дальнейшее расследование, причиной пожара стала преступная халатность техников, пытавшихся слить спирт и вызвавших возгорание.

Через десять лет, 29 августа 1991 года, поднялась в воздух вторая летающая лаборатория, получившая наименование 1А2. На ее борту размещался новый вариант специального комплекса, модифицированный по результатам испытаний проведенных на 1А. Эта лаборатория существует до сих пор, но каких-либо достоверных результатов ее деятельности или ТТХ спецоборудования обнаружить не удалось.



В разное время существовало несколько программ по разработке лазеров морского базирования. Но все они были признаны неэффективными по причине крайне неблагоприятных условий для использования лазерного оружия.



Подводя итог нашего знакомства с лучевым оружием, хочу отметить тот факт, что, в отличие от фантастической литературы и компьютерных игр, военное применение лазеров в реальности носит на сегодняшний день исключительно оборонительный характер. И это не может не радовать.

11.1. Появление новых видов оружия массового поражения

Научно-техническая революция существенно ускорила прогресс в развитии различных областей производственной и общественной деятельности человека. Решающую роль в этом сыграло накопление новых знаний, развитие фундаментальных направлений как технических, так и естественных наук, появление в этих направлениях выдающихся научных открытий.

Эти успехи могли быть полностью направлены в интересах человеческого общества для повышения жизненного уровня народов мира, овладения силами природы, новыми источниками энергии и решения других важных проблем, стоящих перед человечеством. Однако усилиями империалистических кругов, как это было и в прошлом, успехи науки и техники последнего времени направляются прежде всего для достижения военных целей, беспрецедентной тотальной гонки вооружений в интересах обеспечения военно-технического превосходства и достижения глобальной гегемонии.

Концепция военно-технического превосходства, возведенная блоком НАТО в ранг государственной и военной политики, находит свое выражение в непрерывном совершенствовании существующих и созданйи новых видов ОМП. Для разработки новых видов ОМП привлекаются ранее неизвестные или не использованные в прошлом научно-технические принципы и явления. При их создании ставится цель не столько увеличить масштабы поражения, сколько получить новые возможности эффективного, внезапного или скрытного поражения противника, а также вынудить его к непомерным затратам для восстановления военного паритета.

Считается, что из числа возможных в ближайшем будущем новых видов ОМП наибольшую реальную опасность представляют лучевое, радиочастотное, ннфразвуковое, радиологическое и геофизическое оружие.

11.2. Лучевое оружие

Лучевое оружие - это совокупность устройств (генераторов), поражающее действие которых основано на использовании остронаправленных лучей электромагнитной энергии или концентрированного пучка элементарных частиц, разогнанных до больших скоростей. Один из видов лучевого оружия основан на использовании лазеров, другими его видами являются пучковое (ускорительное) оружие.

Лазеры представляют собой мощные излучатели электромагнитной энергии оптического диапазона - «квантовые оптические генераторы». Слово «лазер» происходит от начальных английских букв фразы - Light Amplification by Stimulated Emission of Radiation - «усиление света в результате вынужденного излучения», отражающей существо происходящих в нем процессов.

Работы по использованию лазеров в качестве лучевого оружия, как это следует из зарубежных источников, ведутся в ряде стран с середины 70-х годов. В настоящее время создание боевых лазерных комплексов приобретает реальную основу.

Принцип работы лазера основан на взаимодействии электромагнитного поля с электронами, входящими в состав атомов и молекул содержащегося в нем рабочего вещества. Излучение лазеров в отличие от света обычных оптических источников когерентно (имеет постоянную разность фаз между колебаниями), монохроматично, распространяется в пространстве в виде узко направленного луча и характеризуется высокой концентрацией энергии.

В зависимости от типа рабочего вещества различают лазеры: твердотельные, жидкостные, газовые и полупроводниковые.

В твердотельных лазерах используются кристаллические (например, рубин) или аморфные (стекло с примесью редкоземельных элементов и диэлектрики) вещества. В жидкостных лазерах применяют растворы органических красителей или неорганических солей редких металлов, в газовых -неон, аргон, углекислый газ и другие газы или пары (например, пар кадмия). Полупроводниковый лазер содержит в качестве рабочего тела арсенид галия GaAs, обладающий свойствами полупроводника.

Основными элементами устройства лазеров помимо рабочего вещества являются источник накачки и оптический резонатор. Источник накачки служит для накопления в рабочем веществе лазера возбужденных атомов. Для разных видов рабочего вещества используются различные типы источников накачки. Так, например, для твердотельных и жидкостных лазеров применяют оптические источники накачки (мощные лампы-вспышки).

Под воздействием внешнего источника излучения - источника накачки в рабочем теле лазера возникает так называемая инверсия населенностей уровней (превышение числа атомов с определенной энергией на верхнем уровне по отношению к их числу на нижнем уровне). Это явление и обусловливает начало генерирования светового луча.

Необходимая когерентность излучения достигается в результате возвращения части излученной энергии в активную среду рабочего вещества. Этот процесс осуществляется с помощью оптического резонатора, который в простейшем виде представляет собой два соосно расположенных зеркала, одно из которых полупрозрачно.

Поражающее действие лазерного луча- достигается в результате нагревания до высоких температур материалов объекта, вызывающего их расплавление и даже испарение, повреждение сверхчувствительных элементов, ослепление органов зрения и нанесение человеку термических ожогов кожи.

Действие лазерного луча отличается скрытностью (отсутствием внешних признаков в виде огня, дыма, звука), высокой точностью, прямолинейностью распространения, практически мгновенным действием.

В тумане, при выпадении дождя и снега, а также в условиях задымленности и запыленности атмосферы поражающее действие лазерного луча существенно снижается. Поэтому применение лазеров с наибольшей эффективностью может быть достигнуто в космическом пространстве для уничтожения межконтинентальных баллистических ракет и искусственных спутников Земли, как это предусматривается в авантюристических американских планах «звездных войн».

Предполагается также создание лазерных боевых комплексов различного назначения: наземного, морского и воздушного базирования с различной мощностью, дальностью действия, скорострельностью и разным количеством «выстрелов» (боезапасом). Объектами поражения таких комплексов могут служить оптические средства наблюдения и разведки, живая сила противника (наблюдатели, разведчики, водители, наводчики, пилоты), летательные аппараты различных типов, крылатые, противокорабельные, зенитные и другие типы ракет.

Разновидностью лучевого оружия является ускорительное оружие. Поражающим фактором ускорительного оружия служит высокоточный остронаправленный пучок насыщенных энергией заряженных или нейтральных частиц (электронов, протонов, нейтральных атомов водорода), разогнанных до больших скоростей. Ускорительное оружие называют также пучковым оружием.

В ускорительном оружии главную роль играют две основные системы, определяющие его устройство и действие: система, создающая ускорительные электромагнитные

и электрические поля и обеспечивающая электромагнитное фокусирование пучка;

коммутирующая система, обеспечивающая наведение и удержание пучка на цели.

Мощный поток энергии создает на цели механические ударные нагрузки, интенсивное тепловое воздействие и вызывает (инициирует) коротковолновое электромагнитное (рентгеновское) излучение. Применение ускорительного оружия не требует учета законов баллистики, отличается мгновенностью и внезапностью действия, всепогодностью, мгновенностью процессов разрушения (повреждения) и вывода из строя поражаемых объектов.

Объектами поражения могут быть прежде всего искусственные спутники Земли, межконтинентальные ракеты, баллистические и крылатые ракеты различных типов, а также различные виды наземного вооружения и военной техники. Весьма уязвимым элементом перечисленных объектов является электронное оборудование. Не исключается возможность применения ускорительного оружия по живой силе противника. Согласно "американским источникам существует возможность интенсивного облучения ускорительным оружием из космоса больших площадей земной поверхности (сотен квадратных километров), которое приведет к массовому поражению расположенных на них людей и других биологических объектов.

Боевые комплексы ускорительного оружия могут создаваться в вариантах наземного, морского и космического базирования.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!