Мода и стиль. Красота и здоровье. Дом. Он и ты

Как называется газ который выходит из воды. Извлекаем горючий газ из воды

Что такое "Водяной газ"? Как правильно пишется данное слово. Понятие и трактовка.

Водяной газ (Watergas, Wassergas) - горючая газовая смесь, получаемая при разложении водяного пара раскаленным углем и имеющая следующий, в предельной степени чистоты, состав: по объему 50 процентов водорода и 50 процентов окиси углерода или по весу 6 процентов водорода и 94 процента окиси углерода. Обыкновенно же водяной газ не имеет этого состава; он содержит, кроме названных составных частей, некоторую примесь угольной кислоты, азота и болотного газа. Мы увидим ниже, что состав водяного газа изменяется как по способу добывания, так по горючему материалу, употребляемому для добывания газа. Факт получения горючего газа через разложение водяного пара раскаленным углем открыт был итальянским ученым, профессором Фелицием Фонтана, жившим в 1730-1805 г. Несмотря на давность этого открытия, В. газ только в последние 15-20 лет, и то преимущественно в Америке, получил большое распространение как для освещения, так и для технических целей. Прежде чем описать различные способы и аппараты, употребляемые для добывания В. газа, рассмотрим сперва его физические и химические свойства, благодаря которым он справедливо оспаривает свое преимущество перед другого рода газообразными топливами, как-то: каменноугольным и генераторным газами. Водяной пар при прохождении через раскаленные угли разлагается, при чем образуется водород, окись углерода и угольная кислота. Количество последней зависит от температуры, при которой происходит разложение. При 500° происходит полное разложение на водород и углекислоту, а при 1000-1200° на водород и окись углерода, так что процесс образования В. газа следует себе представить таким образом, что первоначально происходит образование водорода и угольной кислоты, которая затем при достаточно высокой температуре в прикосновении с углем переходит вполне в окись углерода [СО2 + С = 2CO, а вначале: С + 2Н2О = 2Н2 + СО2, следовательно в сумме: С + Н2О = H2 + СО]. Хотя в газовой смеси, составляющей В. газ, находится небольшое количество угольной кислоты и азота, но отличительные качества В. газа обусловливаются двумя главными составными частями его: водородом и окисью углерода. Поэтому при определении нагревательной способности В. газа и количества развиваемых единиц тепла (калорий) нужно иметь в виду количества тепла, развиваемого при сгорании водорода в воду и окиси углерода в угольную кислоту. Единственная затрата теплоты, которая происходит при образовании В. газа, - это на превращение воды в парообразное состояние, на что, по Науману, затрачивается около 8%, так что 92% тепловой способности употребленного для добывания водяного газа углерода содержится в В. газе. На основании этого считают, что при В. газе наивыгоднейшим способом утилизируется тепловая способность углерода. Это мнение оспаривает преимущественно Лунге, который говорит, что В. газ нужно сравнивать не со сгоранием угля в печи, а с генераторным газом, который перед его употреблением не охлажден, как принимает Науманн, до температуры окружающего воздуха, а который непосредственно из генератора поступает в то место, где он должен быть сожжен. При таких условиях генераторный газ, по мнению Лунге, представляет более выгодную утилизацию тепловой способности углерода, чем В. газ [Термохимические данные, относящиеся до В. газа, и сравнение его с другими видами газообразного и твердого топлива, будут приведены в статьях: Горючие материалы, Топливо, Термохимия и Калориметрия. - ?.]. Сравнение В. газа с другими по температурам горения показывает, что более высокую температуру горения дает В. газ. Температура горения будет: для светильного газа - 2700°; для генераторного газа - 9350°; для водяного газа - 2859°; для водорода - 2669°; для окиси углерода - 3041°. Лунге справедливо замечает, что при этом делается предположение, которое на практике не имеет места, что генераторный газ и воздух, в котором он сгорает, имеют обыкновенную температуру, между тем как на практике температура генераторного газа и воздуха обыкновенно бывает 800-1100°. Тем не менее, тепловой эффект, который производит В. газ, гораздо значительнее, чем даже нагретого до такой высокой температуры генераторного газа [тем более, что в регенеративных топках воздух, потребный для гореня газообразных видов топлива, нагревается на счет тепла, теряющегося из топки, водяной же газ дает выходящим продуктам горения высшую температуру. - ?.]. Пламя В. газа незначительно, но в нем плавится платиновая проволока, накаливается сильно магнезиальное тело, испуская яркий белый свет, чего нельзя достичь ни светильным каменноугольным газом, сжигая его в бунзеновской горелке, ни генераторным газом. Пламя В. газа сравнительно с пламенем светильного газа имеет незначительную поверхность, которая почти в 6 раз меньше поверхности пламени светильного газа при равных объемах вытекающих газов. Вследствие меньшей поверхности пламени В. газа оно охлаждается через лучеиспускание весьма незначительно. Эти свойства В. газа и делают его выгодным и удобным источником теплоты, которым техника, как увидим ниже, в последнее время воспользовалась в больших размерах. Но, с другой стороны, благодаря своему химическому составу, т. е. большому содержанию окиси углерода, В. газ встречает много затруднений для более широкого распространения и применения; хотя техника и выработала уже известные правила предосторожности при употреблении В. газа на фабриках и в мастерских, тем не менее все-таки опасения отравиться В. газом еще очень велики. Известно, что окись углерода - газ ядовитый, производящий порчу крови и припадки угара.

Газификация есть процесс превращения органической части твердого, а иногда и жидкого топлива в газообразное состояние. Главными составными частями полученного генераторного газа являются СО, Н2, СН4 и тяжелые углеводороды.

Газообразное топливо в технике находит весьма широкое при­менение вследствие ряда преимуществ.

Для газификании, с получением газа высокой калорийности, могут быть использованы разное малоценное твердое топливо и его отбросы.

Газы можно сжигать при незначительном избытке воздуха с предварительным его подогревом теплотой отходящих продуктов горения; при сжигании газов развивается высокая температура (1500--1900е), вследствие чего коэффициент полезного действия печи или другого нагревательного аппарата получается высоким н возрастает производительность печи.

Предоставляется возможным получать газы на центральной газогенераторной станции.

При сжигании газов достигается удобство обслуживания печей, простота конструкции горелок, возможность точного регулирова­ния процесса горения.

Твердое топливо, превращенное в газообразное состояние, мо­жет быть использовано как хорошее и экономически выгодное горючее для двигателей внутреннего сгорания.

Но наряду с большими достоинствами генераторный газ при применении его как горючего имеет и недостатки, к числу кото­рых следует отнести дополнительные капиталовложения на уста­новку газогенераторов и потерю физического тепла генераторного таза при охлаждении его в процессе очистки.

Однако вследствие весьма больших преимуществ газообраз­ного топлива все крупные современные заводы, имеющие много печей и других нагревательных устройств, расположенных на большой площади, имеют свои центральные газогенераторные станции.

На уральских металлургических заводах и на стеклоплавиль­ных заводах во многих районах СССР газогенераторные уста­новки работают на древесном топливе. За последние годы при­обрели большое значение газогенераторные установки на автомо­билях и тракторах, работающие на древесных чурках.

Генераторный газ быв я воздушны и, с меша нны и, к од я но и 11 оксигаз.

Получение воздушного газа достигается продуванием сухого воздуха через слой раскаленного топлива. Смешанный газ полу­чают продуванием смеси воздуха и водяного пара через слой рас­каленного топлива. Водяной газ можно получить пропусканием через слой раскаленного топлива паров воды и воздуха при пе­риодической подаче то водяных паров, то воздуха. Получение окси - газа достигается пропусканием через слой раскаленного топлива паров воды в смеси с кислородом.

Воздушный газ. При интенсивной подаче воздуха через слой раскаленного топлива получается воздушный газ. При его обра­ботке развивается очень высокая температура (1400-1500°). являющаяся крайне нежелательной, так как вызывает шлакова­ние в газогенераторе, вследствие чего нарушается нормальный его ход.

Смешанный газ. Способ газификации, при котором получается смешанный генераторный газ, является наиболее приемлемым для промышленности, так как позволяет использовать для разложе­ния паров воды тот избыток тепла, который получается при об­разовании воздушного газа. Водяной пар вводится одновременно с воздушным дутьем.

Соотношение между количеством воздуха и паров воды уста­навливается опытным путем, причем оно должно быть таково, чтобы генератор чрезмерно не остывал и не шлаковался. О со­держании влаги, вводимой с дутьем, судят по температуре паро­воздушной смеои, которую обычно измеряют термометром, пока­зывающим точку росы подаваемой паровоздушной смеси. Эта тем­пература обычно держится в пределах 38-52°.

Водяной газ. В связи с развитием синтеза аммиака, метанола, жидкого топлива и других веществ, находит большое применение водяной газ. Его используют в смеси со светильным или другим высококалорийным газом и снабжают им население для исполь­зования, как горючее.

В состав водяного газа входят в основном СО и Н: при неболь­шом содержании СО^, N2 и СН4.

Водяной газ в промышленном масштабе можно получать пу­тем накопления тепла в газогенераторе (первый способ) или под­водом тепла в газогенератор с газифицирующей парогазовой смесью (второй способ).

Процесс получения водяного газа по первому способу, т. е. по способу накопления тепла в газогенераторе, состоит в том, что через раскаленный слой кокса или древесного угля снизу шахты газогенератора продувается воздух; слой топлива постепенно разо­гревается, а получающийся газ при этом выбрасывается обычно в атмосферу. Как только температура в зоне газификации повы­сится до 1100-1200°, доступ воздуха прекращают и пускают перегретый пар сверху вниз. Водяные пары, проходя через раска­ленный слой топлива, разлагаются по указанным ниже реак­циям, давая водяной газ, направляемый к потребителю.

Процесс разложения водяных паров есть процесс эндотерми­ческий; поэтому температура в шахте газогенератора постепенно падает. После понижения температуры до известного предела (800°) подачу пара прекращают и в шахту снова подают воздух. Обычно работу ведут так, что в течение 10 минут вдувают воз­дух, а затем в течение 5 минут - пары воды.

Второй способ получения водяного газа, т. е. путем подвода тепла в газогенератор с газифицирующей парогазовой смесью, является более новым; он может быть осуществлен двояко: либо смесью кислорода с водяным паром, либо смесью водяного пара с циркуляционным газом, предварительно нагретой до высокой температуры.

Второй способ получения водяного газа имеет перед первым то преимущество, что при нем процесс ведется непрерывно, при постоянном режиме работы газогенератора.

Аппараты, в которых газифицируется топливо, называются газогенераторами.

В качестве топлива для газификации служит кокс, каменный уголь, торф, дрова и др. Мы рассмотрим лишь газогенераторы, ра­ботающие на древесном топливе.

Топливо поступает в шахту газогенератора сверху и, спускаясь вниз навстречу нагретому газовому потоку, постепенно превра­щается в парогазовые продукты.

В низ шахты газогенератора (рис. 44) под колосниковую ре­шетку, при получении смешанного газа, подводят воздух и водя­ной пар, которые, поднимаясь вверх, проходят сначала через слой шлака (зона V), за счет теплоты которого они несколько подогре­ваются, и затем - через слой раскаленного горючего, вступая в реакцию с его углеродом. В зоне IV горения (в кислородной зоне) получается и С02, и СО; пары воды частично реагируют с угле­родом.

Образовавшаяся в зоне горения (кислородной зоне) СОг и неразложившиеся пары воды, поднимаясь выше и проходя через слой раскаленного углерода топлива, восстанавливаются с обра­зованием СО и Н2.

Слой топлива, в котором происходит образование СО и Н2, называется зоной восстановления (зона III). В составе газового потока на выходе из зоны восстановления преобладает СО, но не С02.

Обе зоны, кислородная и восстановления, обычно называются зонами газификации.

Выше, непосредственно над зоной восстановления ///, нахо­дится зона II сухой перегонки. В этой зоне происходит выделение

/-зона сшкн; //-зона сухой перегонки: ///- зона восстановления: VI- Зона горения (кислородная); V -зона шлака-, /-шахта газогенера­тора; 2-фартук шахты-, 3-загрузочное устройство; -^-колосниковая решетка; 5-вращающаяся чаша; 6-подвижные опоры чаши; 7-привод чашн-, 8- шлаковый нож; У- шуровочное отверстие; 10-выводной пат­рубок; 11 -воздо-.опронод-, 12 -дутьевая камера; 13- Нижний гидравли­ческий затвор; 14 -люк для розжига

Летучей парогазовой смеси, в состав которой входят неконден­сирующиеся газы, кислоты, спирты, смолы и другие парообразные органические вещества.

В верху шахты газогенератора, в зоне /, происходит сушка топ­лива.

Зона II сухой перегонки и зона I сушки топлива носят назва­ние зоны подготовки топлива.

ОСНОВНЫЕ РЕАКЦИИ ГАЗИФИКАЦИИ

В кислородной зоне. По вопросу взаимодействия углерода с кислородом существуют три гипотезы.

1. Редукционная гипотеза предполагает, что в результате взаимодействии углерода и кислорода образуется непосредственно С02 по уравнению:

TOC o "1-3" h z С - 02 = CO., ; Q, (97)

Причем наличие в вышележащих зонах СО по этой гипотезе рас­сматривается, как результат восстановления С02 раскаленным углеродом топлива по реакции:

CO.. С = 2СО - Q. (98)

2. Гипотеза первичного образования СО предполагает, что к результате взаимодействия С и (): образуется сначала СО но уравнению:

2С а::СО -Q, (99)

Которая потом может окисляться по уравнению:

2С0--0, = 2С02 Q. (100)

3. Гипотеза комплекса предполагает, что сначала образуется сложный углеродно-кислородный комплекс, а затем из него обра­зуется С02 и СО по реакциям:

Л-С -^-0, = Cr0v (10!)

CxOv = mCO, л СО. (102

Наиболее вероятной нз указанных грех гипотез в настоящее время считается третья гипотеза.

В зоне восстановления. Она начинается там, где исчезают по­следние следы кислорода. В зоне восстановления имеют место сле­дующие эндотермические реакции:

А) взаимодействия С с С02:

С CO., -- 2СО; (103)

Б) взаимодействия водяных паров с раскаленным углеродом топлива:

С 211 О - CO. 2Н, (104

С - !1<> С> Н.. (105)

Возможно, что частично эти две последние реакции проте­кают и в кислородной зоне. При температурах выше 900° преоб­ладает вторая из этих двух реакций, а ниже 900° - первая.

Процессы восстановления успевают достаточно полно пройти, если высота восстановительной зоны составляет 12-15 диамет­ров кусков угля.

Таким образом высота слоя топлива в газогенераторе является основным конструктивным размером.

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Водяной газ

продукт газификации топлив, получается в газогенераторах при взаимодействии раскалённого топлива с водяным паром.

Википедия

Водяной газ

Водяно́й газ - газовая смесь, состав которой CO - 44, N - 6, CO - 5, H - 45.

Водяной газ получают продуванием водяного пара сквозь слой раскалённого угля или кокса . Реакция идёт по уравнению:

H_2O + C \rightarrow H_2 + CO

Реакция эндотермическая, идёт с поглощением тепла - 31 ккал / моль (132 кДж /моль), поэтому для поддержания температуры в газогенератор время от времени для накаливания слоя кокса пропускают воздух (или кислород), либо в водяной пар добавляют воздух или кислород.

Именно поэтому водяной газ обычно имеет не стехиометрический состав, то есть 50 об.% H + 50 об.% CO, а содержит также другие газы.

Продукты реакции имеют в 2 раза больший объём относительно объёма водяного пара. Именно на увеличение объёма затрачивается, согласно термодинамике, значительная часть внутренней энергии реакции.

Представляет интерес установка, которая может рекуперировать эту энергию. Часть энергии, в виде электроэнергии может быть потрачена на подогрев твёрдого топлива. В такой установке подогрев может производиться за счёт адиабатического сжатия водяного пара.

Если газогенераторная установка должна питать электростанцию, то её отработавшие газы могут подогревать водяной пар.

ВОДЯНОЙ ГАЗ В КАЧЕСТВЕ СИЛОВОГО ГАЗА

Инженеръ Н.Г. Кузнецовъ, "Двигатель" № 3, 1911 г.

Водяной газ, получивший широкое распространение во многих отраслях промышленности, как в железоделательной (сварка), в стекольной (плавление) и осветительной технике (освещение города, отопление, газовая кухня), не имеет до сих пор в качестве силового привода того успеха, которого от него можно было ожидать. К сожалению, вина в этом падает не на водяной газ, а на заводы тепловых двигателей, которые его отодвинули на второй план из-за некоторых довольно значительных затруднений, связанных с применением этого газа. Благодаря этому получилось такое положение, что в тех местах, где имеются газовые заводы для освещения, нельзя соединить заводские двигатели с газовой сетью, а их приходится питать бензином, так как они не приспособлены для работы на водяном газе.

Австрийскому инженеру K. Reitmaier"у несколько лет назад удалось приноровить газовые двигатели существующих конструкций для работы на водяном газе. Но прежде, чем объяснить причину прежних неудач в этом направлении и приступить к описанию выработанного инженером Рейтмейером способа, сначала надо остановиться на свойствах водяного газа.

Последний образуется при пропускании водяного пара через слой раскаленного кокса в генераторе, подобно тому, как во всасывающем генераторе через слой раскаленного горючего пропускается смесь пара и воздуха. В данном случае проводится один только пар, причем происходит распадение последнего и образование окиси углерода.

Смесь освободившегося водорода и окиси углерода и образует водяной газ. Химическая реакция сопровождается поглощением тепла, так как разложение пара на кислород и водород для 12 кг кокса требует приблизительно 57560 калорий. Тепловая потеря, следовательно, выражается в 28970 калориях, которая возмещается периодическим перерывом газообразования (пропускания пара) и свежей задувкой генератора. На практике задувка продолжается две минуты, а газовый период - 6 минут.
Генератор водяного газа, отличающийся способностью накапливать в столбе кокса весьма большой запас тепла в период дутья имеет следующую конструкцию. Кокс лежит в генераторе, как в открытом ящике, и вдуваемый воздух проникает в него со всех сторон, образуя почти полное горение. Это достигается тем, что воздух входит только одной частью в генератор (через трубу), а другая же часть его поступает в кожух генератора, распределяется там в кольцевом канале и только после этого попадает через решетку в слой кокса, где совершается сгорание окиси углерода в углекислоту. На степень полноты сгорания указывает состав продуктов горения, выпускаемых в период дутья через отверстие в дымовую трубу: СО2 - 17,2%; СО - 5,5.%; O- 0,4%; N - остальное.

На основании данных этого анализа вычисляется количество накопленного в генераторе тепла каждыми 12 кг кокса. Получается всего 98818 калорий.

Так как продукты горения уходят с температурой в 600°С, тот они уносят с собой 21012 калорий.

Остается в генераторе 98818 - 21012 = 77806 калорий, между тем как потеря во время газообразования составляет 28970 калорий на 12 кг углерода. Эта потеря, таким образом, покрывается с избытком, что на практике выражается в весьма коротком периоде дутья (3/4 - 1 мин.) и длинном периоде газообразования (около 7 мин.).

Выходящий из генератора газ нуждается еще в очистке, так как кроме серы содержит еще золу и кремнезем. Последний отлагается в виде тонкого белого порошка на стенках генератора и трубопроводов. Этот кремнезем образуется от окисления содержащегося в золе кокса кремневодорода.

Удаление из газа твердого осадка и сероводорода безусловно необходимо. Неполная очистка газа от этих веществ ведет к тому, что цилиндры и поршни быстро теряют свою герметичность, следствием чего является потеря газа в период сжатия, уменьшение степени наполнения, а потому - уменьшение мощности двигателя. Потеря герметичности происходит, с одной стороны под влиянием разъедающего действия на стенки цилиндра и поршня серной кислоты, образующейся от сгорания в цилиндре сероводорода, а с другой стороны, порошкообразный кремнезем, смешиваясь с маслом, образует род наждака, который истирает стенки цилиндров.

Для удаления серы и кремнезема требуется в случае правильно оборудованной газовой установки два очистителя; один наполнен гидратом окиси железа для поглощения сероводорода, а другой - деревянными опилками, улавливающими частицы кремнезема. Кроме того, до поступления в очистители газ промывается в скруббере, где освобождается от золы и охлаждается. Из очистителей газ направляется в резервуар, а оттуда к двигателю. Содержимое очистителей должно обновляться через каждые 5-6 недель; кроме того необходимо производить почаще испытание газа на присутствие в нем серы и кремнезема.
Для этого служит следующий прибор. Газ подводится к нему посредством гуттаперчевой трубки и проходит через регулятор, установленный на проход 50 литров газа в час, идет далее по стеклянной трубке и сгорает в горелке, снабженной градуированным цилиндром. В стеклянной трубке имеется бумажная полоска, смоченная уксуснокислым свинцом (свинцовым сахаром). Если в газе имеется сероводород, то последний окрашивает бумажку в коричневый или черный цвет. Присутствие кремнезема в газе обнаруживается при помощи куска обыкновенного листового железа (черной жести), который держат над цилиндром; появление на черной поверхности металла белого пятна указывает на присутствие кремнекислоты. Само собой разумеется, что в случае обнаружения указанных элементов в газе, необходимо наполнить очистители свежими реагентами.
Водяному газу приписывается еще тот недостаток, что он имеет склонность давать преждевременные вспышки. При применении электрического зажигания этого, конечно, не бывает, но при зажигании трубкой этот недостаток проявляется довольно регулярно. Объясняется это высоким содержанием водорода в водяном газе, сравнительно с генераторным газом. Устраняются преждевременные вспышки укорачиванием трубки накаливания, или помещением лампы ближе к концу трубки, так как сжатая газовая смесь при этом позже доходит до раскаленной части трубки; или же помещают лампу ближе к концу трубки.
Остается еще указать тепловой коэффициент полезного действия двигателя, питаемого водяным газом, и стоимость его эксплуатации. Тепловой коэффициент полезного действия, как известно, определяется формулой:

а действительный коэффициент полезного действия выводится из теплового эквивалента Q = 624 калории на 1 л. силу, деленного на действительный расход единиц тепла.

Так как теплопроизводительная способность газа - 2500 калорий на 1 кб. метр, температура пламени - 1700°С, а температура уходящих газов около 400°С, то при расходе 900 метров газа на силу, получим: Тепловой коэффициент полученного действия равен 0,66, действительный тепловой коэффициент полезного действия равен 0,276, а действительное использование составляет 41,9 %.

Стоимость эксплуатации 100-сильной установки, доставляющей 1000 куб. метров водяного газа в день или 300000 куб. метров в год.

15 вагонов кокса по 250 марок..................3750 марок
3 вагона угля для производства пара....…….600 марок
1 мастер и помощник..................................…..1800 марок
Очистка газа...................................................…... 300 марок
Ремонт...............................................................……....200 марок
Погашение капитала и % с него (7 % с 35000 марок).......2450 марок
ИТОГО..............................................................………………9100 марок
Стоимость 1 куб. м. газа......9100/300000=3.03 пфен.
Стоимость 1 силы-час................. 3.03х0.9 = 2.727 пфен.

Городские газовые заводы в Германии взимают 10 пфенигов за 1 кубич. метр водяного газа для промышленных целей. Для тех, кто пользуется покупным газом, стоимость 1 силы-час выразится, следовательно, величиной 10х0.9=9 пфен.
В Шенеберге многие мелкие и средние предприятия питаются водяным газом, доставляемым городской центральной газовой станцией, и действие их вполне безукоризненно.

Двигатель, питающийся водяным газом, имеет, по мнению Рейтмейера, большую будущность. Путь, по которому идет развитие городского благоустройства, приведет в ближайшем будущем к слиянию газовой и электрической центральных станций в одну, двигатели которой будут питаться водяным газом и приводить в действие динамомашины. Такая станция, вырабатывая одновременно газовую и электрическую энергию для целей освещения, отопления и передачи силы, имеет на своей стороне преимущество дешевизны оборудования и эксплуатации.

(Подготовка к печати: инженер Д.А. Боев, 06-2006)


Модель полностью основана на патенте Хиллари Элдридж, США
603 058 "Electrical Retort" представленный 26 апреля 1898.


Горючий газ произведен электрической дугой полученной
графитовыми стержнями, погруженными в дистиллированную, питьевую, соленую или
другой тип воды, которая по существу состоит из водорода, кислорода, углерода и
других веществ.


Генератор производит смесь угарного газа и водорода (COH2),
которая сгорает очень чисто с кислородом воздуха, и может использоваться как
топливо для двигателя внутреннего сгорания. При сгорании COH2 образуется
углекислый газ и водяной пар, поэтому загрязнение окружающей среды крайне
незначительно.


Анализ газа, проведенный НАСА: Водород 46.483 %


Углекислый газ 9.329


Этилен 0.049



Ацетилен 0.616


Кислород 1.164



Метан 0.181


Угарный газ 38.370


Общее количество 100.015

Этот простой эксперимент предназначен исключительно для
доказательства основной концепции. Данный генератор не может быть использован для
длительного использования, и служит лишь для демонстрации.

Вам потребуется немного материалов, генератор очень просто построить и проверить....

Будьте осторожны, генератор производит взрывчатый газ, Вы
обязаны проводить этот опыт в хорошо проветриваемом помещении или на открытом
воздухе. Вы не должны курить в течение опыта.. Не забудьте, что угарный газ
(CO) - очень ядовит, не вдыхать его! Эксперимент предназначен только для
опытных. Экспериментатор должен быть очень осторожен во время опыта! Опыты
проводятся вами на свой страх и риск. Я не принимаю на себя никакой
ответственности за все, что может случиться при неправильном использовании
данной информации.

Вам понадобится только:


Небольшая пластмассовая бутылка из под газированной воды,


Два графитовых стержня (70 mm длина, 6 mm диаметр)


Один 1 ом 50Watts резистор


Трансформатор постоянного тока, который в состоянии
обеспечить 35v / 10A


Провода, разьемы и кремниевый цемент, либо любой другой
водостойкий состав.

Нужно
очень немного материалов.....

1) Высверлить два диаметральных отверстия (10 mm диаметр) в 60 mm от основания бутылки и
вставьте графитовые стержни с (резинками от стиральной машины - для
герметизации) и проклеить резинки кремниевым цементом. Желательно, чтобы конец
одного из графитовых стержней был конусным. Два стержня должны быть перед
включением в слабом контакте (см. ниже).

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!