Мода и стиль. Красота и здоровье. Дом. Он и ты

Ср 10 инерциальные системы отсчета. Инерциальные системы отсчета

Система отсчета, движущаяся (относительно звезд) равномерно и прямолинейно (т. е. по инерции), называется инерциальной. Очевидно, что таких систем отсчета - неисчислимое множество, поскольку любая система, движущаяся относительно некоторой инерциальной системы отсчета равномерно и прямолинейно, тоже инерциальна, Системы отсчета, движущиеся (относительно инерциальной системы) с ускорением, называются неинерциальными.

Опыт показывает, что

во всех инерциальных системах отсчета все механические процессы протекают совершенно одинаково (при одинаковых условиях).

Это положение, названное механическим принципом относительности (или принципом относительности Галилея), было сформулировано в 1636 г. Галилеем. Галилей пояснял его на примере механических процессов, совершающихся в каюте корабля, плывущего равномерно и прямолинейно по спокойному морю. Для наблюдателя, находящегося в каюте колебание маятника, падение тел и другие механические процессы протекают точно так же, как и на неподвижном корабле. Поэтому, наблюдая эти процессы, невозможно установить ни величину скорости, ни даже сам факт движения корабля. Чтобы судить о движении корабля относительно какой-либо системы отсчета (например, поверхности еоды), необходимо вести наблюдения и за этой системой (видеть, как удаляются предметы, лежащие на воде, и т. п.).

К началу XX в. выяснилось, что не только механические, но и тепловые, электрические, оптические и все другие процессы и явления природы протекают совершенно одинаково во всех инерциальных системах отсчета. На этом основании Эйнштейн в 1905 г. сформулировал обобщенный принцип относительности, названный впоследствии принципом относительности Эйнштейна:

во всех инерциальных системах отсчета все физические процессы протекают совершенно одинаково (при одинаковых условиях).

Этот принцип наряду с положением о независимости скорости распространения света в вакууме от движения источника света (см. § 20) лег в основу специальной теории относительности, разработанной Эйнштейном.

Законы Ньютона и другие рассмотренные нами законы динамики, выполняются только в инерциальных системах отсчета. В неинерциальных системах отсчета эти законы, вообще говоря, уже несправедливы. Рассмотрим простой пример, поясняющий последнее утверждение.

На совершенно гладкой платформе, движущейся равномерно и прямолинейно, лежит шар массой на этой же платформе находится наблюдатель. Другой наблюдатель стоит на Земле недалеко от места, мимо которого вскоре должна пройти платформа. Очевидно, что оба наблюдателя связаны с инерциальными системами отсчета.

Пусть теперь, в момент прохождения мимо наблюдателя, связанного с Землей, платформа начнет двигаться с ускорением а, т. е. сделается неинерциальной системой отсчета. При этом шар, ранее покоившийся относительно платформы, придет (относительно нее же) в движение с ускорением а, противоположным по направлению и равным по величине, ускорению, приобретенному платформой. Выясним, как выглядит поведение шара с точек зрения каждого из наблюдателей.

Для наблюдателя, связанного с инерциальной системой отсчета - Землей, шар продолжает двигаться равномерно и прямолинейно в полном соответствии с законом инерции (поскольку на него не действуют никакие силы, кроме силы тяжести, уравновешиваемой реакцией опоры).

Наблюдателю, связанному с неинерциальной системой отсчета - платформой, представляется иная картина: шар приходит в движение и приобретает ускорение - а без воздействия силы (поскольку наблюдатель не обнаруживает воздействия на шар каких-либо других тел, сообщающих шару ускорение). Это явно противоречит закону инерции. Не выполняется и второй закон Ньютона: применив его, наблюдатель получил бы, что (сила) а это невозможно, так как ни ни а не равны нулю.

Можно, однако, сделать законы динамики применимыми и для описания движений в неинерциальных системах отсчета, если ввести в рассмотрение силы особого рода - силы инерции. Тогда в нашем примере наблюдатель, связанный с платформой, может считать, что шар пришел в движение под действием силы инерции

Введение силы инерции позволяет записывать второй закон Ньютона (и его следствия) в обычной форме (см. § 7); только под действующей силой надо теперь понимать результирующую «обычных» сил и сил инерции

где масса тела, а - его ускорение.

Силы инерции мы назвали силами «особого рода», во-первых, потому, что они действуют только в неинерциальных системах отсчета, и, во-вторых, потому, что для них в отличие от «обычных» сил невозможно указать, действием каких именно других тел (на рассматриваемое тело) они обусловлены. Очевидно, по этой причине к силам инерции невозможно применить третий закон Ньютона (и его следствия); это является третьей особенностью сил инерции.

Невозможность указать отдельные тела, действием которых (на рассматриваемое тело) обусловлены силы инерции, не означает, конечно, что возникновение этих сил вообще не связано с действием каких-либо материальных тел. Имеются серьезные основания предполагать, что силы инерции обусловлены действием всей совокупности тел Вселенной (массой Вселенной в целом).

Дело в том, что между силами инерции и силами тяготения существует большое сходство: и те и другие пропорциональны массе тела, на которое они действуют, и потому ускорение, сообщаемое телу каждой из этих сил, не зависит от массы тела. При определенных условиях эти силы вообще невозможно различить. Пусть, например, где-то в космическом пространстве движется с ускорением (обусловленным работой двигателей) космический корабль. Находящийся в нем космонавт будет при этом испытывать силу, прижимающую его к «полу» (задней по отношению к направлению движения стенке) корабля. Эта сила создаст точно такой же эффект и вызовет у космонавта такие же ощущения, какие вызвала бы соответствующая сила тяготения.

Если космонавт считает, что его корабль движется с ускорением а относительно Вселенной, то он назовет действующую на него силу силой инерции. Если же космонавт будет считать свой корабль неподвижным, а Вселенную - несущейся мимо корабля с таким же ускорением а, то он назовет эту силу силой тяготения. И обе точки зрения будут совершенно равноправными. Никакой эксперимент, выполненный внутри корабля, не сможет доказать правильность одной и ошибочность другой точки зрения.

Из рассмотренного и других аналогичных примеров следует, что ускоренное движение системы отсчета эквивалентно (по своему действию на тела) возникновению соответствующих сил тяготения. Это положение получило название принципа эквивалентности сил тяготения и инерции (принципа эквивалентности Эйнштейна); данный принцип положен в основу общей теории относительности.

Силы инерции возникают не только в прямолинейно движущихся, но и во вращающихся неинерциальных системах отсчета. Пусть, например, на горизонтальной платформе, могущей вращаться вокруг вертикальной оси, лежит тело массой связанное с центром вращения О резиновым шнуром (рис. 18). Если платформа начнет вращаться с угловой скоростью со (и, следовательно, превратится в неинерциальную систему), то благодаря трению тело тоже будет вовлечено во вращение. Вместе с тем оно будет перемещаться в радиальном направлении от центра платформы до тех пор, пока возрастающая сила упругости растягивающегося шнура не остановит это перемещение. Тогда тело начнет вращаться на расстоянии от центра О.

С точки зрения наблюдателя, связанного с платформой, перемещение шара относительно нее обусловлено некоторой силой Это есть сила инерции, поскольку она не вызвана действием на шар других определенных тел; ее называют центробежной силой инерции. Очевидно, что центробежная сила инерции равна по величине и противоположна по направлению силе упругости растянутого шнура, играющей роль центростремительной силы, которая действует на тело, вращающееся по отношению к инерциальной системе (см. § 13) Поэтому

следовательно, центробежная сила инерции пропорциональна расстоянию тела от оси вращения.

Подчеркнем, что центробежную силу инерции не следует смешивать с «обычной» центробежной силой, упомянутой в конце § 13. Это силы различной природы, приложенные к разным объектам: центробежная сила инерции приложена к телу, а центробежная сила - к связи.

В заключение отметим, что с позиции принципа эквивалентности сил тяготения и инерции простое объяснение получает действие всех центробежных механизмов: насосов, сепараторов и т. п. (см. § 13).

Любой центробежный механизм можно рассматривать как вращающуюся неинерциальную систему, вызывающую появление поля тяготения радиальной конфигурации, которое в ограниченной области значительно превосходит поле земного тяготения. В этом поле более плотные частицы вращающейся среды или частицы, слабо связанные с ней, отходят к ее периферии (как бы идут «ко дну»).

Вопросы.

1. Как движется тело, если на него не действуют другие тела?

Тело движется равномерно и прямолинейно, либо покоится.

2. Тело движется прямолинейнои равномерно. Меняется ли при этом его скорость?

Если тело движется равномерно и прямолинейно, то его скорость не меняется.

3. Какие взгляды относительно состояния покоя и движения тел существовали до начала XVII в.?

До начала XVII века господствовала теория Аристотеля, согласно которой, если на него не оказывается внешнее воздействие, то оно может покоится, а для того, чтобы оно двигалось с постоянной скоростью на него непрерывно должно действовать другое тело.

4. Чем точка зрения Галилея, касающаяся движения тел, отличается от точки зрения Аристотеля?

Точка зрения Галилея, о движении тел, отличается от точки зрения Аристотеля тем, что тела могут двигаться в отсутствие внешних сил.

5. Как проводился опыт, изображенный на рисунке 19, и какие выводы из него следуют?

Ход опыта. На тележке, движущейся равномерно и прямолинейно, относительно земли, находятся два шарика. Один шарик покоится на дне тележки, а второй подвешен на нити. Шарики находятся в состоянии покоя относительно тележки, так как силы действующие на них уравновешены. При торможении оба шарика приходят в движение. Они изменяют свою скорость относительно тележки, хотя на них не действуют никакие силы. Вывод: Следовательно, в системе отсчёта, связанной с тормозящей тележкой закон инерции не выполняется.

6. Как читается первый закон Ньютона? (в современной формулировке)?

Первый закон Ньютона в современной формулировке: существуют такие системы отсчета, относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела (силы) или действие этих тел (сил) скомпенсировано (равно нулю).

7. Какие системы отсчёта называются инерциальными, а какие - неинерциальными?

Системы отсчёта, в которых выполняется закон инерции называются инерциальными, а в которых не выполняется - неинерциальными.

Да, можно. Это вытекает из определения инерциальных систем отсчета.

9. Инерциальна ли система отсчета, движущаяся с ускорением, относительно какой-либо инерциальной системы?

Нет, не инерциальна.

Упражнения.

1. На столе, в равномерно и прямолинейно движущемся поезде стоит легкоподвижный игрушечный автомобиль. При торможении поезда автомобиль без всякого внешнего воздействия покатился вперед, сохраняя свою скорость относительно земли.
Выполняется ли закон инерции: а) в системе отсчета, связанной с землёй; б) в системе отсчета, связанной с поездом, во время его прямолинейного и равномерного движения? Во время торможения?
Можно ли в описанном случае считать инерциальной систему отсчета, связанную с землёй? с поездом?

а) Да, закон инерции выполняется во всех случаях, т.к. машинка продолжила движение относительно Земли; б) В случае равномерного и прямолинейного движения поезда закон инерции выполняется (машинка неподвижна), а при торможении нет. Земля во всех случаях является инерциальной системой отсчета, а поезд только при равномерном и прямолинейном движении.

Древние философы пытались понять суть движения, выявить воздействие звезд и Солнца на человека. Кроме того, люди всегда пытались выявить те силы, которые действуют на материальную точку в процессе ее движения, а также в момент покоя.

Аристотель считал, что при отсутствии движения на тело не оказывают воздействия какие-либо силы. Попробуем выяснить, какие системы отсчета называются инерциальными, приведем их примеры.

Состояние покоя

В повседневной жизни трудно выявить подобное состояние. Практически во всех видах механического движения предполагается присутствие посторонних сил. Причиной является сила трения, не дающая многим предметам покидать свое первоначальное положение, выходить из состояния покоя.

Рассматривая примеры инерциальной системы отсчета, отметим, что все они отвечают 1 закону Ньютона. Только после его открытия удалось объяснить состояние покоя, указывать силы, действующие в этом состоянии на тело.

Формулировка 1 закона Ньютона

В современной интерпретации он объясняет существование систем координат, относительно которых можно рассматривать отсутствие воздействия на материальную точку внешних сил. С точки зрения Ньютона, инерциальными называются системы отсчета, которые позволяют рассматривать сохранение скорости тела на протяжении длительного времени.

Определения

Какие системы отсчета являются инерциальными? Примеры их изучаются в школьном курсе физики. Инерциальными считают такие системы отсчета, относительно которых материальная точка передвигается с постоянной скоростью. Ньютон уточнял, что любое тело может находиться в подобном состоянии до тех пор, пока нет необходимости прикладывать к нему силы, способные изменять подобное состояние.

В реальности закон инерции выполняется не во всех случаях. Анализируя примеры инерциальных и неинерциальных систем отсчета, рассмотрим человека, держащегося за поручни в передвигающемся транспорте. При резком торможении машины человек автоматически передвигается относительно транспорта, несмотря на отсутствие внешней силы.

Получается, что не все примеры инерциальной системы отсчета соответствуют формулировке 1 закона Ньютона. Для уточнения закона инерции было введено уточненное отсчета, в которых он безукоризненно выполняется.

Виды систем отсчета

Какие системы отсчета называются инерциальными? Скоро это станет понятно. «Приведите примеры инерциальных систем отсчета, в которых выполняется 1 закон Ньютона» - подобное задание предлагают школьникам, выбравшим физику в качестве экзамена в девятом классе. Для того чтобы справиться с поставленной задачей, необходимо иметь представление об инерциальных и неинерциальных системах отсчета.

Инерция предполагает сохранение покоя или равномерного прямолинейного движения тела до тех пор, пока тело находится в изоляции. «Изолированными» считают тела, которые не связаны, не взаимодействуют, удалены друг от друга.

Рассмотрим некоторые примеры инерциальной системы отсчета. Если считать системой отсчета звезду в Галактике, а не движущийся автобус, выполнение закона инерции для пассажиров, которые держатся за поручни, будет безупречным.

Во время торможения данное транспортное средство будет продолжать равномерное прямолинейное движение до тех пор, пока на него не будут воздействовать иные тела.

Какие примеры инерциальной системы отсчета можно привести? Они не должны иметь связи с анализируемым телом, влиять на его инертность.

Именно для таких систем выполняется 1 закон Ньютона. В реальной жизни трудно рассматривать передвижение тела относительно инерциальных систем отсчета. Невозможно попасть на далекую звезду, чтобы с нее проводить земные эксперименты.

В качестве условных систем отсчета принимают Землю, несмотря на то что она связана с предметами, размещенными на ней.

Рассчитать ускорение в инерциальной системе отсчета можно, если считать в качестве системы отсчета поверхность Земли. В физике нет математической записи 1 закона Ньютона, но именно он является основой для выведения многих физических определений и терминов.

Примеры инерциальных систем отсчета

Школьникам иногда сложно понять физические явления. Девятиклассникам предлагается задание следующего содержания: «Какие системы отсчета называются инерциальными? Приведите примеры подобных систем». Допустим, что тележка с шаром первоначально движется по ровной поверхности, имея постоянную скорость. Далее она передвигается по песку, в результате шар приводится в ускоренное движение, несмотря на то что на него не действуют иные силы (их суммарное воздействие равно нулю).

Суть происходящего можно пояснить тем, что во время движения по песчаной поврехности система перестает быть инерциальной, она обладает постоянной скоростью. Примеры инерциальных и неинерциальных систем отсчета свидетельствуют о том, что в определенный промежуток времени происходит их переход.

При разгоне тела его ускорение имеет положительную величину, а при торможении этот показатель становится отрицательным.

Криволинейное движение

Относительно звезд и Солнца движение Земли осуществляется по криволинейной траектории, что имеет форму эллипса. Та система отсчета, в которой центр совмещается с Солнцем, а оси направлены на определенные звезды, будет считаться инерциальной.

Отметим, что всякая система отсчета, которая будет прямолинейно и равномерно передвигаться относительно гелиоцентрической системы, является инерциальной. Криволинейное движение осуществляется с некоторым ускорением.

Учитывая тот факт, что Земля совершает движение вокруг своей оси, система отсчета, которая связана с ее поверхностью, относительно гелиоцентрической движется с некоторым ускорением. В подобной ситуации можно сделать вывод, что система отсчета, которая связана с поверхностью Земли, передвигается с ускорением относительно гелиоцентрической, поэтому ее нельзя считать инерциальной. Но значение ускорения подобной системы настолько мало, что во многих случаях существенно влияет на специфику механических явлений, рассматриваемых относительно нее.

Чтобы решать практические задачи технического характера, принято считать инерциальной ту систему отсчета, которая жестко связана с поверхностью Земли.

Относительность Галилея

Все инерциальные системы отсчета имеют важное свойство, которое описывается принципом относительности. Суть его заключается в том, что любое механическое явление при одинаковых начальных условиях осуществляется одинаково независимо от выбираемой системы отсчета.

Равноправие ИСО по принципу относительности выражается в следующих положениях:

  • В таких системах одинаковы, поэтому любое уравнение, которое описывается ними, выражается через координаты и время, остается неизменным.
  • Результаты проводимых механических опытов позволяют устанавливать, будет ли система отсчета покоиться, или она совершает прямолинейное равномерное движение. Любая система условно может быть признана неподвижной, если другая при этом совершает относительно нее движение с некоторой скоростью.
  • Уравнения механики остаются неизменными по отношению к преобразованиям координат в случае перехода от одной системы ко второй. Можно описать одно и то же явление в различных системах, но их физическая природа при этом меняться не будет.

Решение задач

Первый пример.

Определите, является ли инерциальной системой отсчета: а) искусственный спутник Земли; б) детский аттракцион.

Ответ. В первом случае не идет речи об инерциальной системе отсчета, поскольку спутник передвигается по орбите под воздействием силы земного притяжения, следовательно, движение происходит с некоторым ускорением.

Второй пример.

Система отчета прочно связана с лифтом. В каких ситуациях ее можно называть инерциальной? Если лифт: а) падает вниз; б) передвигается равномерно вверх; в) ускоренно поднимается; г) равномерно направляется вниз.

Ответ. а) При свободном падении появляется ускорение, поэтому система отсчета, что связана с лифтом, не будет являться инерциальной.

б) При равномерном передвижении лифта система является инерциальной.

в) При движении с некоторым ускорением систему отсчета считают инерциальной.

г) Лифт передвигается замедленно, имеет отрицательное ускорение, поэтому нельзя назвать систему отсчета инерциальной.

Заключение

На протяжении всего времени своего существования человечество пытается понять явления, происходящие в природе. Попытки объяснить относительность движения были предприняты еще Галилео Галилеем. Исааку Ньютону удалось вывести закон инерции, который стали использовать в качестве основного постулата при проведении вычислений в механике.

В настоящее время в систему определения положения тела включают тело, прибор для определения времени, а также систему координат. В зависимости от того, подвижным или неподвижным является тело, можно дать характеристику положения определенного объекта в нужный промежуток времени.

Представляем вашему вниманию видеоурок, посвященный теме «Инерциальные системы отсчета. Первый закон Ньютона», которая входит в школьный курс физики за 9 класс. В начале занятия преподаватель напомнит о важности выбранной системы отсчета. А затем расскажет о правильности и особенностях выбранной системы отсчета, а также объяснит термин «инерция».

На предыдущем уроке мы говорили о важности выбора системы отсчета. Напомним, что от того, как мы выберем СО, будут зависеть траектория, пройденный путь, скорость. Есть еще ряд особенностей, связанных с выбором системы отсчета, именно о них и поговорим.

Рис. 1. Зависимость траектории падения груза от выбора системы отсчета

В седьмом классе вы изучали понятия «инерция» и «инертность».

Инерция – это явление , при котором тело стремится сохранить свое первоначальное состояние . Если тело двигалось, то оно должно стремиться к тому, чтобы сохранять скорость этого движения. А если оно покоилось, то будет стремиться сохранить свое состояние покоя.

Инертность – это свойство тела сохранять состояние движения. Свойство инертности характеризуется такой величиной, как масса. Масса мера инертности тела . Чем тело тяжелее, тем его труднее сдвинуть с места или, наоборот, остановить.

Обратите внимание на то, что эти понятия имеют непосредственное отношение к понятию «инерциальная система отсчета » (ИСО), о которой будет идти речь ниже.

Рассмотрим движение тела (или состояние покоя) в случае, если на тело не действуют другие тела. Заключение о том, как будет вести себя тело в отсутствии действия других тел, впервые было предложено Рене Декартом (рис. 2) и продолжено в опытах Галилея (рис. 3).

Рис. 2. Рене Декарт

Рис. 3. Галилео Галилей

Если тело движется и на него не действуют другие тела, то движение будет сохраняться, оно будет оставаться прямолинейным и равномерным. Если же на тело не действуют другие тела, а тело покоится, то будет сохраняться состояние покоя. Но известно, что состояние покоя связано с системой отсчета: в одной СО тело покоится, а в другой вполне успешно и ускоренно движется. Результаты опытов и рассуждений приводят к выводу о том, что не во всех системах отсчета тело будет двигаться прямолинейно и равномерно или находиться в состоянии покоя при отсутствии действия на него других тел.

Следовательно, для решения главной задачи механики важно выбрать такую систему отчета, где все-таки выполняется закон инерции, где ясна причина, вызвавшая изменение движения тела. Если тело будет двигаться прямолинейно и равномерно в отсутствии действия других тел, такая система отсчета будет для нас предпочтительной, а называться она будет инерциальной системой отсчета (ИСО).

Точка зрения Аристотеля на причину движения

Инерциальная система отсчета - это удобная модель для описания движения тела и причин, которые вызывают такое движение. Впервые это понятие появилось благодаря Исааку Ньютону (рис. 5).

Рис. 5. Исаак Ньютон (1643-1727)

Древние греки представляли себе движение совершенно иначе. Мы познакомимся с аристотелевской точкой зрения на движение (рис. 6).

Рис. 6. Аристотель

Согласно Аристотелю, существует единственная инерциальная система отсчета - система отсчета, связанная с Землей. Все остальные системы отсчета, по Аристотелю, второстепенные. Соответственно, все движения можно разбить на два вида: 1) естественные, то есть те, которые сообщает Земля; 2) вынужденные, то есть все остальные.

Самый простой пример естественного движения - это свободное падение тела на Землю, так как Земля в этом случае сообщает телу скорость.

Рассмотрим пример принудительного движения. Это ситуация, когда лошадь тянет телегу. Пока лошадь прилагает силу, телега движется (рис. 7). Как только лошадь остановилась, остановилась и телега. Нет силы - нет скорости. Согласно Аристотелю, именно сила объясняет у тела наличие скорости.

Рис. 7. Принудительное движение

До сих пор некоторые обыватели считают справедливой точку зрения Аристотеля. Например, полковник Фридрих Краус фон Циллергут из «Похождения бравого солдата Швейка во время мировой войны» пытался проиллюстрировать принцип «Нет силы - нет скорости»: «Когда весь бензин вышел, - говорил полковник, - автомобиль принужден был остановиться. Это я сам вчера видел. И после этого еще болтают об инерции, господа. Не едет, стоит, с места не трогается. Нет бензина! Ну не смешно ли?»

Как и в современном шоу-бизнесе, там, где есть поклонники, всегда найдутся и критики. Появлялись свои критики и у Аристотеля. Они предлагали ему проделать следующий эксперимент: отпустите тело, и оно упадет точно под тем местом, где мы его отпустили. Приведем пример критики теории Аристотеля, аналогичный примерам его современников. Представьте, что летящий самолет выбрасывает бомбу (рис. 8). Упадет ли бомба ровно под тем местом, где мы ее отпустили?

Рис. 8. Иллюстрация к примеру

Конечно же, нет. Но ведь это естественное движение - движение, которое сообщила Земля. Тогда что же заставляет эту бомбу перемещаться еще и вперед? Аристотель отвечал так: дело в том, что естественное движение, которое сообщает Земля - это падание строго вниз. Но при движении в воздухе бомба увлекается его завихрениями, и эти завихрения как бы толкают бомбу вперед.

Что же будет, если воздух убрать и создать вакуум? Ведь если воздуха не будет, то, согласно Аристотелю, бомба должна упасть строго под тем местом, где ее бросили. Аристотель утверждал, что если воздуха не будет, то такая ситуация возможна, но на самом деле в природе не бывает пустоты, вакуума нет. А раз нет вакуума - нет и проблемы.

И только Галилео Галилей сформулировал принцип инерции в том виде, к которому мы привыкли. Причина изменения скорости - это действие на тело других тел. Если на тело не действуют другие тела или это действие скомпенсировано, то скорость тела меняться не будет.

Можно провести следующие рассуждения относительно инерциальной системы отсчета. Представьте ситуацию, когда движется автомобиль, затем водитель выключает двигатель, и дальше автомобиль движется по инерции (рис. 9). Но это некорректное утверждение по той простой причине, что с течением времени автомобиль остановится в результате действия силы трения. Поэтому в данном случае не будет равномерного движения - одно из условий отсутствует.

Рис. 9. Скорость автомобиля меняется в результате действия силы трения

Рассмотрим другой случай: с постоянной скоростью движется большой, крупный трактор при этом впереди он тащит большой груз ковшом. Такое движение можно рассматривать как прямолинейное и равномерное, потому что в этом случае все силы, которые действуют на тело, скомпенсированы, уравновешивают друг друга (рис. 10). Значит, систему отсчета, связанную с этим телом, мы можем считать инерциальной.

Рис. 10. Трактор движется равномерно и прямолинейно. Действие всех тел скомпенсировано

Инерциальных систем отсчета может быть очень много. Реально же такая система отсчета все-таки идеализирована, поскольку при ближайшем рассмотрении таких систем отсчета в полном смысле нет. ИСО - это некая идеализация, которая позволяет эффективно моделировать реальные физические процессы.

Для инерциальных систем отсчета справедлива формула сложения скоростей Галилея. Также заметим, что все системы отсчета, о которых мы говорили до этого, можно считать инерциальными в некотором приближении.

Впервые сформулировал закон, посвященный ИСО, Исаак Ньютон. Заслуга Ньютона заключается в том, что он первый научно показал, что скорость движущегося тела меняется не мгновенно, а в результате какого-то действия с течением времени. Вот этот факт и лег в основу создания закона, который мы называем первым законом Ньютона.

Первый закон Ньютона : существуют такие системы отсчета, в которых тело движется прямолинейно и равномерно или находится в состоянии покоя в том случае, если на тело не действуют силы или все силы, действующие на тело, скомпенсированы. Такие системы отсчета называются инерциальными.

По-другому иногда говорят так: инерциальной системой отсчета называется такая система, в которой выполняются законы Ньютона.

Почему Земля - неинерциальная СО. Маятник Фуко

В большом количестве задач необходимо рассматривать движение тела относительно Земли, при этом Землю мы считаем инерциальной системой отсчета. Оказывается, это утверждение не всегда справедливо. Если рассматривать движение Земли относительно своей оси или относительно звезд, то это движение совершается с некоторым ускорением. СО, которая движется с неким ускорением не может считаться инерциальной в полном смысле.

Земля вращается вокруг своей оси, а значит все точки, лежащие на ее поверхности, непрерывно меняют направление своей скорости. Скорость - векторная величина. Если ее направление меняется, то появляется некоторое ускорение. Следовательно, Земля не может быть правильной ИСО. Если подсчитать это ускорение для точек находящихся на экваторе (точки, которые обладают максимальным ускорением относительно точек, находящихся ближе к полюсам), то его значение будет . Индекс показывает, что ускорение является центростремительным. В сравнении с ускорением свободного падения , ускорением можно пренебречь и считать Землю инерциальной системой отсчета.

Однако при длительных наблюдениях забывать о вращении Земли нельзя. Убедительно это показал французский ученый Жан Бернар Леон Фуко (рис. 11).

Рис. 11. Жан Бернар Леон Фуко (1819-1868)

Маятник Фуко (рис. 12) - это массивный груз, подвешенный на очень длинной нити.

Рис. 12. Модель маятника Фуко

Если маятник Фуко вывести из состояния равновесия, то он будет описывать следующую траекторию отличную от прямой (рис. 13). Смещение маятника обусловлено вращением Земли.

Рис. 13. Колебания маятника Фуко. Вид сверху.

Вращением Земли обусловлен еще ряд интересных фактов. Например, в реках северного полушария, как правило, правый берег более крутой, а левый берег более пологий. В реках южного полушария - наоборот. Все это обусловлено именно вращением Земли и появляющейся в результате этого силы Кориолиса.

К вопросу о формулировке первого закона Ньютона

Первый закон Ньютона : если на тело не действуют никакие тела либо их действие взаимно уравновешено (скомпенсировано), то это тело будет находиться в состоянии покоя или двигаться равномерно и прямолинейно.

Рассмотрим ситуацию, которая укажет нам на то, что такую формулировку первого закон Ньютона необходимо подкорректировать. Представьте себе поезд с занавешенными окнами. В таком поезде пассажир не может определить, движется поезд или нет, по объектам снаружи. Рассмотрим две системы отсчета: СО, связанная с пассажиром Володей и СО, связанная с наблюдателем на платформе Катей. Поезд начинает разгоняться, скорость его увеличивается. Что произойдет с яблоком, которое лежит на столе? Оно по инерции покатится в противоположную сторону. Для Кати будет очевидно, что яблоко движется по инерции, но для Володи это будет непонятно. Он не видит, что поезд начал свое движение, и вдруг яблоко, лежащее на столе, начинается на него катиться. Как такое может быть? Ведь, по первому закону Ньютона, яблоко должно оставаться в состоянии покоя. Следовательно, нужно усовершенствовать определение первого закона Ньютона.

Рис. 14. Иллюстрация примеру

Корректная формулировка первого закона Ньютона звучит так: существуют такие системы отсчета, в которых тело движется прямолинейно и равномерно или находится в состоянии покоя в том случае, если на тело не действуют силы или все силы, действующие на тело, скомпенсированы.

Володя находится в неинерциальной системе отсчета, а Катя - в инерциальной.

Большая часть систем, реальных систем отсчета - неинерциальные. Рассмотрим простой пример: сидя в поезде, вы положили на стол какое-либо тело (например, яблоко). Когда поезд трогается с места, мы будем наблюдать такую любопытную картину: яблоко будет двигаться, покатится в противоположную движению поезда сторону (рис. 15). В данном случае мы не сможем определить, какие же тела действуют, заставляют яблоко двигаться. В этом случае говорят, что система неинерциальная. Но можно выйти из положения, введя силу инерции .

Рис. 15. Пример неинерциальной СО

Еще один пример: когда тело движется по закруглению дороги (рис. 16), то возникает сила, которая заставляет отклоняться тело от прямолинейного направления движения. В этом случае мы тоже должны рассмотреть неинерциальную систему отсчета , но, как и в предыдущем случае, тоже можем выйти из положения, вводя т. н. силы инерции .

Рис. 16. Силы инерции при движении по закругленной траектории

Заключение

Систем отсчета существует бесконечное множество, но среди них большинство - это те, которые мы инерциальными системами отсчета считать не можем. Инерциальная система отсчета - это идеализированная модель. Кстати, такой системой отсчета мы можем принять систему отсчета, связанную с Землей или какими-либо далекими объектами (например, со звездами).

Список литературы

  1. Кикоин И.К., Кикоин А.К. Физика: Учебник для 9 класса средней школы. - М.: Просвещение.
  2. Перышкин А.В., Гутник Е.М. Физика. 9 кл.: учебник для общеобразоват. учреждений / А. В. Перышкин, Е. М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300.
  3. Соколович Ю.А., Богданова Г.С. Физика: Справочник с примерами решения задач. - 2-е издание, передел. - X.: Веста: Издательство «Ранок», 2005. - 464 с.
  1. Интернет-портал «physics.ru» ()
  2. Интернет-портал «ens.tpu.ru» ()
  3. Интернет-портал «prosto-o-slognom.ru» ()

Домашнее задание

  1. Сформулируйте определения инерциальной и неинерциальной систем отсчета. Приведите примеры таких систем.
  2. Сформулируйте первый закон Ньютона.
  3. В ИСО тело находится в состоянии покоя. Определите, чему равно значение его скорости в ИСО, которая движется относительно первой системы отсчета со скоростью v ?

Первый закон Ньютона формулируется следующим образом: тело, неподверженное внешним воздействиям, либо находится в покое, либо движется прямолинейно и равномерно . Такое тело называется свободным , а его движение – свободным движением или движением по инерции. Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при отсутствии воздействия на него других тел называется инерцией . Поэтому первый закон Ньютона называют законом инерции. Свободных тел, строго говоря, не существует. Однако естественно предположить, что чем дальше частица находится от других материальных объектов, тем меньшее воздействие они на нее оказывают. Представив себе, что эти воздействия уменьшаются, мы и приходим в пределе к представлению о свободном теле и свободном движении.

Экспериментально проверить предположение о характере движения свободной частицы невозможно, поскольку нельзя абсолютно достоверно установить факт отсутствия взаимодействия. Можно лишь с определенной степенью точности смоделировать данную ситуацию, используя экспериментальный факт уменьшения взаимодействия между удаленными телами. Обобщение ряда экспериментальных фактов, а также совпадение вытекающих из закона следствий с опытными данными доказывают его справедливость. При движении тело тем дольше сохраняет свою скорость, чем слабее на него действуют другие тела; например, скользящий по поверхности камень тем дольше движется, чем ровнее эта поверхность, то есть чем меньше воздействие на него этой поверхности.

Механическое движение относительно, и его характер зависит от системы отсчета. В кинематике выбор системы отсчета не был существенным. Не так обстоит дело в динамике. Если в какой-либо системе отсчета тело движется прямолинейно и равномерно, то в системе отсчета, движущейся относительно первой ускоренно, этого уже не будет. Отсюда следует, что закон инерции не может быть справедливым во всех системах отсчета. Классическая механика постулирует, что существует система отсчета, в которой все свободные тела движутся прямолинейно и равномерно. Такая система отсчета называется инерциальной системой отсчета (ИСО). Содержание закона инерции, в сущности, сводится к утверждению, что существуют такие системы отсчета, в которых тело, не подвергнутое внешним воздействиям, движется равномерно и прямолинейно или покоится.



Установить, какие системы отсчета являются инерциальными, а какие – неинерциальными, можно только опытным путем. Допустим, например, что речь идет о движении звезд и других астрономических объектов в доступной нашему наблюдению части Вселенной. Выберем систему отсчета, в которой Земля считается неподвижной (такую систему мы будем называть земной). Будет ли она инерциальной?

В качестве свободного тела можно выбрать звезду. Действительно, каждая звезда, ввиду ее громадной удаленности от других небесных тел, является практически свободным телом. Однако в земной системе отсчета звезды совершают суточные вращения на небесном своде, а следовательно, движутся с ускорением, направленным к центру Земли. Таким образом, движение свободного тела (звезды) в земной системе отсчета совершается по окружности, а не по прямой линии. Оно не подчиняется закону инерции, поэтому земная система отсчета не будет инерциальной.

Следовательно, для решения поставленной задачи надо проверить на инерциальность другие системы отсчета. Выберем в качестве тела отсчета Солнце. Такая система отсчета называется гелиоцентрической системой отсчета, или системой Коперника. Координатными осями связанной с ней системы координат являются прямые, направленные на три удаленные звезды, не лежащие в одной плоскости (рис. 2.1).

Таким образом, при изучении движений, происходящих в масштабе нашей планетной системы, а также всякой другой системы, размеры которой малы по сравнению с расстоянием до тех трех звезд, которые в системе Коперника выбраны в качестве опорных, система Коперника практически является инерциальной системой отсчета.

Пример

Неинерциальность земной системы отсчета объясняется тем, что Земля вращается вокруг собственной оси и вокруг Солнца, то есть движется ускоренно относительно системы Коперника. Так как оба эти вращения происходят медленно, то по отношению к громадному кругу явлений земная система ведет себя практически как инерциальная система. Вот почему установление основных законов динамики можно начать с изучения движения тел относительно Земли, отвлекаясь от ее вращения, то есть принять Землю за приблизительно ИСО.

СИЛА. МАССА ТЕЛА

Как показывает опыт, любое изменение скорости тела возникает под влиянием других тел. В механике процесс изменения характера движения под влиянием других тел называют взаимодействием тел. Для количественной характеристики интенсивности этого взаимодействия Ньютон ввёл понятие силы. Силы могут вызывать не только изменение скорости материальных тел, но и их деформацию. Поэтому понятию силы можно дать следующее определение: сила – количественная мера взаимодействия по крайней мере двух тел, вызывающая ускорение тела или изменение его формы, или и то и другое вместе.

Примером деформации тела под действием силы является сжатая или растянутая пружина. Её легко использовать в качестве эталона силы: в качестве единицы силы берётся упругая сила, действующая в пружине, растянутой или сжатой в определённой степени. Пользуясь таким эталоном, можно сравнивать силы и изучать их свойства. Силы обладают следующими свойствами.

ü Сила является векторной величиной и характеризуется направлением, модулем (числовым значением) и точкой приложения. Силы, приложенные к одному телу, складываются по правилу параллелограмма.

ü Сила является причиной ускорения. Направление вектора ускорения параллельно вектору силы.

ü Сила имеет материальное происхождение. Нет материальных тел – нет сил.

ü Действие силы не зависит от того, находится тело в состоянии покоя или движется.

ü При одновременном действии нескольких сил тело получает такое ускорение, какое бы оно получило под действием результирующей силы .

Последнее утверждение составляет содержание принципа суперпозиции сил. В основе принципа суперпозиции лежит представление о независимости действия сил: каждая сила сообщает рассматриваемому телу одно и то же ускорение, независимо от того, действует ли только i -й источник сил или все источников одновременно. Это можно сформулировать иначе. Сила, с которой одна частица действует на другую, зависит от радиус-векторов и скоростей только этих двух частиц. Присутствие других частиц на эту силу не влияет. Это свойство называется законом независимости действия сил или законом парного взаимодействия. Область применимости этого закона охватывает всю классическую механику.

С другой стороны, для решения многих задач бывает необходимо найти несколько сил, которые своим совместным действием могли бы заменить одну данную силу. Такую операцию называют разложением данной силы на составляющие.

Из опыта известно, что при одинаковых взаимодействиях различные тела неодинаково изменяют свою скорость движения. Характер изменения скорости движения зависит не только от величины силы и времени её действия, а и от свойств самого тела. Как показывает опыт, для данного тела отношение каждой силы, действующей на него, к сообщаемому этой силой ускорению является величиной постоянной . Это отношение зависит от свойств ускоряемого тела и называется инертной массой тела. Таким образом, масса тела определяется как отношение силы, действующей на тело, к сообщаемому этой силой ускорению . Чем больше масса, тем большая сила требуется для сообщения телу определённого ускорения. Тело как бы сопротивляется попытке изменить его скорость.

Свойство тел, которое выражается в способности сохранять во времени своё состояние (скорость движения, направление движения или состояние покоя), называется инертностью. Мерой инертности тела является его инертная масса.При одинаковом воздействии со стороны окружающих тел одно тело может быстро изменять свою скорость, а другое в тех же условиях – значительно медленнее (рис. 2.2). Принято говорить, что второе из этих двух тел обладает большей инертностью, или, другими словами, второе тело обладает большей массой. В Международной системе единиц (СИ) масса тела измеряется в килограммах (кг). Понятие массы нельзя свести к более простым понятиям. Чем больше масса тела, тем меньшее ускорение оно приобретет под действием одинаковой силы. Чем больше сила, тем с большим ускорением, а следовательно, и большей конечной скоростью будет двигаться тело.

Единицей измерения силы в системе единиц СИ является Н (ньютон). Один Н (ньютон) численно равен силе, которая сообщает телу массой m = 1 кг ускорение .

Замечание.

Отношение справедливо только при достаточно малых скоростях. При увеличении скорости это отношение изменяется, возрастая со скоростью.

ВТОРОЙ ЗАКОН НЬЮТОНА

Из опыта следует, что в инерциальных системах отсчета ускорение тела пропорционально векторной сумме всех действующих на него сил и обратно пропорционально массе тела:

Второй закон Ньютона выражает связь между равнодействующей всех сил и вызываемым ей ускорением:

Здесь – изменение импульса материальной точки за время . Устремим промежуток времени к нулю:

тогда получим

Среди экстремальных видов развлечений особое место занимают прыжки с «тарзанки», или «банджи-джампинг». В местечке Джеффри Бей находится самая большая из зарегистрированных «тарзанок» – 221 м. Она даже занесена в Книгу рекордов Гиннеса. Длина веревки рассчитывается так, чтобы человек прыгая вниз, останавливался у самой кромки воды или только касался ее. Прыгающего человека удерживает упругая сила деформированного каната. Обычно тросом служат множество сплетенных вместе резиновых жил. Так что при падении трос пружинит, не давая ногам прыгуна оторваться и добавляя прыжку дополнительные ощущения. В полном соответствии со вторым законом Ньютона увеличение времени взаимодействия прыгуна с канатом приводит к ослаблению силы, действующей со стороны каната на человека.
Для того, чтобы при игре в волейбол принять мяч, летящий с большой скоростью, необходимо перемещать руки по направлению движения мяча. При этом увеличивается время взаимодействия с мячом, а, следовательно, в полном соответствии со вторым законом Ньютона уменьшается величина силы, действующей на руки.

Представленный в такой форме второй закон Ньютона содержит новую физическую величину – импульс. При скоростях, близких к скорости света в вакууме, импульс становится основной величиной, измеряемой в экспериментах. Поэтому уравнение (2.2) является обобщением уравнения движения на релятивистские скорости.

Как видно из уравнения (2.2), если , то постоянная величина, отсюда следует, что постоянна, то есть импульс, а с ним и скорость свободно движущейся материальной точки постоянны. Таким образом, формально первый закон Ньютона является следствием второго закона. Почему же тогда он выделяется в самостоятельный закон? Дело в том, что уравнение, выражающее второй закон Ньютона, только тогда имеет смысл, когда указана система отсчета, в которой оно справедливо. Выделить же такую систему отсчета позволяет первый закон Ньютона. Он утверждает, что существует система отсчета, в которой свободная материальная точка движется без ускорения. В такой системе отсчета движение всякой материальной точки подчиняется уравнению движения Ньютона. Таким образом, по существу, первый закон нельзя рассматривать как простое логическое следствие второго. Связь между этими законами более глубокая.

Из уравнения (2.2) следует, что , то есть бесконечно малое изменение импульса за бесконечно малый промежуток времени равно произведению , называемому импульсом силы. Чем больше импульс силы, тем больше изменение импульса.

ТИПЫ СИЛ

Все многообразие существующих в природе взаимодействий сводится к четырем типам: гравитационное, электромагнитное, сильное и слабое. Сильные и слабые взаимодействия существенны на столь малых расстояниях, когда законы механики Ньютона уже неприменимы. Все макроскопические явления в окружающем нас мире определяются гравитационным и электромагнитным взаимодействиями. Только для этих видов взаимодействий можно использовать понятие силы в смысле механики Ньютона. Гравитационные силы наиболее существенны при взаимодействии больших масс. Проявления электромагнитных сил чрезвычайно многообразны. Хорошо известные силы трения, упругие силы имеют электромагнитную природу. Поскольку второй закон Ньютона определяет ускорение тела независимо от природы сил, сообщающих ускорение, то в дальнейшем будем пользоваться так называемым феноменологическим подходом: опираясь на опыт, установим количественные закономерности для этих сил.

Упругие силы. Упругие силы возникают в теле, испытывающем воздействие других тел или полей, и связаны с деформацией тела. Деформации представляют собой особый вид движения, а именно перемещение частей тела относительно друг друга под действием внешней силы. При деформации тела изменяются его форма и объем. Для твердых тел различают два предельных случая деформации: упругие и пластические. Деформацию называют упругой, если она полностью исчезает после прекращения действия деформирующих сил. При пластических (неупругих) деформациях тела частично сохраняют измененную форму после снятия нагрузки.

Упругие деформации тел разнообразны. Под действием внешней силы тела могут растягиваться и сжиматься, изгибаться, скручиваться и т.д. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации. Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости. Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации.

Опыт показывает, что при малых упругих деформациях величина деформации пропорциональна вызывающей ее силе (рис. 2.3). Это утверждение носит название закона Гука .

Роберт Гук (Robert Hooke), 1635–1702

Английский физик. Родился во Фрешуотере на острове Уайт в семье священника, окончил Оксфордский университет. Еще учась в университете, работал ассистентом в лаборатории Роберта Бойля, помогая последнему строить вакуумный насос для установки, на которой был открыт закон Бойля–Мариотта. Будучи современником Исаака Ньютона, вместе с ним активно участвовал в работе Королевского общества, а в 1677 г. занял там пост ученого секретаря. Как и многие другие ученые того времени, Роберт Гук интересовался самыми разными областями естественных наук и внес вклад в развитие многих из них. В своей монографии «Микрография» он опубликовал множество зарисовок микроскопического строения живых тканей и других биологических образцов и впервые ввел современное понятие «живая клетка». В геологии он первым осознал важность геологических пластов и первым в истории занялся научным изучением природных катаклизмов. Он же одним из первых высказал гипотезу, что сила гравитационного притяжения между телами убывает пропорционально квадрату расстояния между ними, и двое соотечественников и современников, Гук и Ньютон, так до конца жизни и оспаривали друг у друга право называться первооткрывателем закона всемирного тяготения. Гук разработал и собственноручно построил целый ряд важных научно-измерительных приборов. Он, в частности, первым предложил помещать перекрестье из двух тонких нитей в окуляр микроскопа, первым предложил принять температуру замерзания воды за ноль температурной шкалы, а также изобрел универсальный шарнир (карданное сочленение).

Математическое выражение закона Гука для деформации одностороннего растяжения (сжатия) имеет вид:

где – сила упругости; – изменение длины (деформация) тела; – коэффициент пропорциональности, зависящий от размеров и материала тела, называемый жесткостью. Единица жесткости в СИ – ньютон на метр (Н/м). В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела. Сила упругости всегда направлена к положению равновесия. Сила упругости, которая действует на тело со стороны опоры или подвеса, называется силой реакции опоры или силой натяжения подвеса.

При . В этом случае . Следовательно, модуль Юнга численно равен такому нормальному напряжению, которое должно было бы возникнуть в теле при увеличении его длины в два раза (если бы для такой большой деформации выполнялся закон Гука). Из (2.3) видно также, что в системе единиц СИ модуль Юнга измеряется в паскалях (). Для различных материалов модуль Юнга меняется в широких пределах. Для стали, например, , а для резины приблизительно , то есть на пять порядков меньше.

Конечно, закон Гука даже в усовершенствованной Юнгом форме не описывает всего, что происходит с твердым веществом под воздействием внешних сил. Представьте себе резиновую ленту. Если растянуть ее не слишком сильно, со стороны резиновой ленты возникнет возвращающая сила упругого натяжения, и как только вы ее отпустите, она тут же соберется и примет прежнюю форму. Если растягивать резиновую ленту дальше, то рано или поздно она утратит свою эластичность, и вы почувствуете, что сила сопротивления растяжению уменьшилась. Значит, вы перешли так называемый предел эластичности материала. Если тянуть резину и дальше, через какое-то время она вообще порвется, и сопротивление исчезнет полностью. Это значит, что пройдена так называемая точка разрыва. Иными словами, закон Гука действует только при относительно небольших сжатиях или растяжениях.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!