Мода и стиль. Красота и здоровье. Дом. Он и ты

Простая лазерная сигнализация с фоторезистором. Простая лазерная растяжка-сигнализация своими руками

Данная сигнализация из лазерной указки , которую можно собрать своими руками, подобна той, которую мы можем наблюдать в различных фильмах. Сигнализация использует лазерный луч для защиты ваших ценностей и имущества.

По существу, когда между лучом и датчиком появляется какое либо препятствие (человек или животное), сопротивление фотодиода увеличивается и в результате на выходе устройства появляется высокий уровень напряжение, который затем может активировать сирену или какое-либо исполнительное устройство.

Ток потребления приемника составляет порядка 10 мА. Лазерную указку и приемник можно разместить в общем корпусе, а лазерный луч уже с помощью зеркала направить на фотодиод.

Описание лазерной сигнализации

На схеме мы видим операционный усилитель TL072 (IC1.A) настроенный в качестве компаратора напряжений. Он сравнивает опорное напряжение на инвертирующем входе ОУ (вывод 3), идущее с регулируемого резисторного делителя на P1, R4 и напряжение поступающее на прямой вход ОУ (вывод 2) с делителя, состоящего из фотодиода D1 и постоянного резистора R3.

Когда лазерный луч прерывается, напряжение на выводе 2 компараторе падает ниже опорного напряжения на выводе 3. Результатом этого является высокий уровень на выходе 1 операционного усилителя. Как уже было сказано выше, данный сигнал можно использовать для включения сирены, компьютера или прожектора, который, возможно, будет сдерживать нарушителя.

Резистор R2 обеспечивает гистерезис для предотвращения неустойчивости схемы, когда напряжение на обоих входах компаратора равны. Конденсатор С1 предназначен для игнорирования непродолжительного прерывания луча, например, летающими насекомыми. Если вы хотите чтобы чувствительность сигнализации была выше, то можно уменьшить емкость конденсатора С1 до 1мкФ.

Схема проста и может быть собрана на небольшом кусочке макетной платы. После сборки цепи и тестирования, вы должны поместить ее в подходящий корпус, в котором имеется отверстие под фотодиод. Желательно фотодиод предварительно установить в трубку черного цвета, для того чтобы предотвратить попадание постороннего источника света.

В последнее время лазерные указки получили широкое распространение. Они продаются в магазинах и на радиорынках, а их стоимость невысока. Узконаправленный луч, излучаемый такой указкой, можно использовать в охранной технике.

Этому и посвящена предлагаемая статья.

Внимание! Лазерное излучение опасно для глаз и может вызвать повреждение кожного покрова. При работе с источниками лазерного излучения избегайте попадания луча на людей.

Инфракрасные лазеры с их невидимым излучением широко используются в профессиональных охранных системах. К сожалению, радиолюбители располагают пока лишь одной разновидностью лазерного излучателя - указкой красного свечения.

Она имеет небольшую мощность излучения, не более нескольких милливатт, безопасна для людей и животных, однако не рекомендуется направлять лазерное излучение непосредственно в глаза.

Излучение лазерной указки в импульсном режиме настолько малозаметно, что в скрытности она мало уступает инфракрасным излучателям, а в части юстировки системы имеет перед ними явное преимущество.

Схема импульсного излучателя на базе лазерной указки показана на рис. 1. Частоту следования вспышек лазера задает генератор, собранный на элементах DD1.1 и DD1.2. При указанных на схеме номиналах эта частота примерно равна 5 Гц. За счет дифференцирующей цепи С2RЗ на выходе элемента DD1.4 формируются короткие импульсы длительностью 10 мкс.

Эти импульсы открывают до насыщения транзистор VТ1, и лазер BI1 формирует вспышки такой же длительности.

Для снижения общего энергопотребления излучателя введен резистор R6, понижающий напряжение питания микросхемы DD1 до 3 В. Тумблер SA1 предназначен для включения режима непрерывного излучения при юстировке.

Устройство собрано на печатной плате (рис. 2) из двусторонне фольгированного стеклотекстолита толщиной 1 мм Фольгу под деталями используют лишь в качестве общего провода. Соединения с ней выводов конденсаторов, резисторов и других элементов показаны зачерненными квадратами; квадратом со светлой точкой в центре показано “заземление" вывода 7 микросхемы DD1.

Рис. 1. Принципиальная схема лазерного передатчика - модулятора.

Все резисторы - МЛТ-0,125. Конденсаторы С1 и С2 - КМ-6, С3 и С4 - К53-30.

Лазерную указку нужно укоротить. Отступив от “окна" на 18 мм (конусообразный наконечник вообще удаляют) аккуратно опиливают ее корпус по кругу и отделяют батарейную часть. Со ставшей теперь доступной платы лазера демонтируют кнопку, а излишек платы откусывают (рис. 3).

Все конструктивные элементы излучателя монтируют на пластине 51x30 мм, вырезанной из листового ударопрочного полистирола толщиной 1,5. .2 мм (рис. 4).

Здесь: 1 - лазер в гнезде-обойме; 2 - перегородка для батареи питания; 3 - печатная плата; 4 - наклеенный на перегородку фиксатор печатной платы (две полоски полистирола); 5 - приклеенная к основанию полистироловая опора высотой 10 мм с резьбой под винт М2. Высота деталей на плате должна быть меньше 10 мм.

Рис. 2. Печатная плата передатчика для охранной лазерной сигнализации.

Корпус излучателя изготавливают из того же полистирола в виде открытой коробки. Габариты полностью смонтированного прибора - 56x34x19 мм.

Средний ток, потребляемый импульсным лазерным излучателем, не превышает 10 мкА. При этом импульсный ток в самом лазере - 25...30 мА. Подбором резистора R7 этот ток может быть изменен, в частности увеличен.

При расчете импульсного тока нужно иметь в виду, что последовательно с резистором R7 включен резистор сопротивлением 50...60 Ом, “впечатанный" в саму плату лазера (см рис 3).

Рис. 3. Подключение лазерной указки.

Рис. 4. Корпус охранного устройства на лазерной указке.

Рис. 5. Схема приемника для лазерной сигнализации.

Источником питания излучателя служит 6-вольтная батарея типа 476. Батареи этого типоразмера (013x25,2 мм) имеют емкость от 95 (алкалиновые) до 160 мАч (литиевые) и способны обеспечить непрерывную его работу по меньшей мере в течение года.

Выводы к батарее лучше припаять, поскольку в охранной технике контакт прижимом не обеспечивает достаточной надежности. При столь малом энергопотреблении нет нужды и в выключателе питания (тоже, кстати, весьма ненадежном элементе). Излучатель сохраняет работоспособность при снижении напряжения питания до 4,5 В. Конечно, при этом уменьшается и яркость луча.

Принципиальная схема приемной головки, реагирующей на короткие вспышки лазерного излучателя, показана на рис. 5. Здесь BL1 - фотодиод, обладающий достаточным быстродействием и чувствительностью. Время его включения-выключения должно быть в 5...10 раз меньше длительности вспышки. Ряд подходящих фотодиодов приведен в таблице.

В ответ на каждую вспышку лазера на выходе микросхемы DA1 (вывод 10) возникает единичный импульс, пригодный для непосредственного управления КМОП-микросхемами.

Корпус головки должен быть светонепроницаемым. Его можно склеить из черного ударопрочного полистирола. Во избежание боковой подсветки к “окну” фотодиода рекомендуется приклеить бленду.

Рис. 6. Печатная плата лазерного приемника.

Ее можно изготовить в виде “колодца" квадратного сечения из того же полистирола. Фотодиод можно закрыть красным светофильтром: он мало ослабит излучение лазера. Для защиты от сильных электрических наводок головку нужно заключить в металлический экран.

Головка имеет низкое выходное сопротивление и может быть связана с прочими элементами фотоприемника тонким трехпроводным шнуром длиной 1...2 м. При установке вне помещения она должна быть защищена от непогоды. Потребляемый головкой ток не превышает 1,5 мА (при напряжении питания 6 В).

При юстировке системы лазер переводят в режим непрерывного излучения и наводку луча осуществляют визуально. Чтобы не расходовать энергию батареи GB1, на время настройки можно воспользоваться внешней 6-вольтной батареей.

Нет нужды говорить о том, что лазерный излучатель, работающий в охранной системе, должен быть не только точно наведен, но и “намертво” закреплен в выставленной позиции (если в системе есть зеркала, то это относится и к ним).

Хотя это не значит, что луч лазера вообще не может отклоняться. Опыт показывает, что вспышку лазера можно зарегистрировать и по его излучению, рассеянному под малыми углами. Надежно фиксировались, например, вспышки лазера, удаленного на 50 м, если головка оставалась в круге диаметром 35 см.

Ю. Виноградов, г. Москва. Р2001, 7.

В этой статье мы расскажем, как сделать лазерную сигнализацию. Идея заключается в том, чтобы сделать такую сигнализацию, как показывают в фильмах, про супергероев.

Эта лазерная сигнализация имитирует – растяжку, когда тонкая проволока натянута в 20 сантиметрах над землей (полом). Когда злоумышленник, проникает на охраняемую территорию и цепляет растяжку - активируется сигнал тревоги. А что если сделать лазерную сигнализацию и растяжку сразу? Правильно, так получится совсем интересно.

Рассматриваемая в статье сигнализация в первую очередь предназначена для использования в страйкболе, но можно применить ее и для охраны жилых помещений, гаража и т.д.

Принцип работы сигнализации на лазерной указке довольно прост.

Микроконтроллер PIC16F688 управляет лазерным модулем, посылающим луч, который должен быть возвращен посредством зеркала. Отраженный луч принимается фоторезистором. Микроконтроллер PIC16F688 проверяет состояние фоторезистора и если лазерный луч перекрыт - активирует звуковой сигнал.

Схема лазерной сигнализации довольно проста и представлена на следующем рисунке:

Для изменения режимов работы служит переключатель S3 - выбора режима работы: лазер и / или растяжка:

  1. Лазер + растяжка.
  2. Растяжка.

Фоторезистор должен быть помещен внутри трубки, чтобы исключить попадание на него солнечного света или других источников света. Для исключения вероятности случайного срабатывания лазерной сигнализации.

А лазерную указку необходимо доработать, припаяв провода, на место установки батареек.

На следующем рисунке показан лазерный модуль и трубка для фоторезистора.

Чтобы объединить оба элемента их надо выровнять и склеить вместе, например, холодной сваркой или пластиком. Таким образом, они собираются параллельно друг другу.

Для варианта с растяжкой использован микропереключатель, помещенный в верхней части корпуса лазерной сигнализации. Рычаг микрика выступает над корпусом, через окно, чтобы можно было зацепить за него леску, нить или тонкую проволоку.

Теперь можно окончательно доделать корпус, сделав отверстия для светодиодов, кнопки включения, переключателей режимов и сирены.

Устанавливая излучатель с приемником, обратите внимание, что должна оставаться возможность регулировки этой части лазерной сигнализации.

В сигнализации используется модифицированный портативный бипер от ПК, потому, что он достаточно маленький и очень громкий. Но его электронная схема должна быть изменена, чтобы можно было подключить ее к микроконтроллеру PIC16F688.

По завершении сборки необходимо проверить работоспособность сигнализация из лазерной указки.

Схема работает следующим образом. При включении питания, устройство входит в режим настройки, проверяет лазер и дает нам знать, если отраженный луч правильно вернулся в приемник. В этот момент надо настроить зеркала. Если отраженный луч настроен правильно загорается красный светодиод.

После корректировки луча, надо нажать кнопку 1 раз для выхода из режима настройки и перехода в рабочее состояние.

Если лазерный луч перекрыть, микроконтроллер PIC16F688 отключит лазер и активирует сирену.
Сирена будет работать, пока не нажмете на кнопку. Голосов)


В прошлых материалах мы рассмотрели множество способов изготовления различных сигнализаций, но пока не рассказали об изготовлении самого эффективного вида подобных систем безопасности – о лазерной. Спешим исправить ошибку и представляем обзор видеоролика по изготовлению самодельной лазерной сигнализации.

Что же нам понадобится:
- тиристор BT169;
- конденсатор;
- резисторы 47k;
- фоторезистор или LDR;
- светодиодная лампочка;
- лазер.








Первым делом представляем схему лазерной сигнализации, по которой будем собирать ее на Breadboard-е.


Сборку начнем с тиристора, который подключаем на breadboard. На тиристоре слева расположен катод, справа анод, а по центру управляющий электрод. По схеме видно, что плюс никак не идет напрямую в тиристор, а обязательно проходит через то, что мы хотим, чтобы включалось. В данном случае через светодиодную лампочку.


Поэтому следующим шагом берем плюс и подаем его куда-нибудь возле тиристора.


Потом этот плюс через светодиод подаем на анод.


Посмотрим на схему. Катод сразу подключается на минус. Катод находиться слева, поэтому подключаем левую ножку тиристора на минус.


Также на минус нужно подключить фоторезистор и конденсатор. Автор подключает конденсатор на минус и на линию 45 на breadboard-е.


Фоторезистор подключаем на минус и на ту же самую линию.


Теперь на ту же линию, но с плюса подключаем резистор.


Теперь эти три нужно подать на управляющий электрод тиристора. Для этого подключаем один контакт провода к линии 45, а второй проводим к центральному контакту тиристора.


Протестируем сигнализацию. Для этого нужно включить лазер и навести его на фоторезистор. Включив после этого питание на breadboard-е, можно увидеть, что светодиод не горит. Стоит провести пальцем между лазером и фоторезистором, как светодиодная лампочка сразу загорится. После этого сигнализация выключится лишь при отключении питания.


Работает сигнализация по следующему принципу. Как только свет, идущий от лазера, блокируется, фоторезистор активирует всю схему. Тиристор в свою очередь включает пищалку или светодиод, который мы использовали в данном случае, и сигнализация срабатывает. Отметим, что даже при использовании пищалки, не стоит убирать светодиодную лампочку, поскольку в этом случае сигнализация будет включается, когда блокирующий лазер предмет будет убран, и лазер начнет светить на фоторезистор.

Используя игрушку с лазером, которая стоит, как вы знаете, копейки, можно создать сигнализацию и установить на входе в квартиру, гараж, двор. Расходов почти нету, а выгода несоизмеримо большая.

Чтобы собрать конструкцию, понадобится лазерная указка и несколько радиодеталей. Принцип действия сигнализации основан на чувствительности фоторезистора, реагирующего на луч лазера.

В этом видео показано, как собрать лазерную сигнализацию. Для этого потребуется указка и несколько деталей. Схема устройства собран на таймере 555. Для обнаружения лазерного излучения нам понадобится фоторезистор. Он соединен со вторым резистором, чтобы получить делитель напряжения. Сопротивление второго резистора должна быть сопоставима с фоторезистором. В нашем случае оно равно 100 ом. Когда фоторезистор не облучается, его сопротивление увеличивается. Это приводит к повышению напряжения на 6 ножек микросхемы. В результате появляется логический ноль на выходе микросхемы и включается пищалка.

Выключить динамик и сбросить систему можно, переведи логический анализ динамика на trigger. Переключившись назад, вернем схему в режим готовности.

Для проверки соберем схему на макете. Если все будет работать правильно, соберем на плате. Разместим фоторезистор на длинных ножках, чтобы иметь возможность настроить положение после монтажа. Прикрепим батарейный отёк к плате клеевым пистолетом. Свободные провода закрепим вокруг платы резинкой. Самое время установить систему. В простейшем случае лучше будет подобен растяжке, находящейся по одну сторону двери. Расположенных друг напротив друга. Сначала закрепим сигнализацию. Клейкой лентой закрепим кнопку указки во включенном состоянии. Смонтируем указку на месте. Настройки лучше точно на центр фото резистора. После этого включите систему. Любой входящий будет активировать сигнализацию. Одиночный растяжка работает отлично. С помощью нескольких зеркал можно покрыть лучами всю комнату. Закрепим указку на одной из поверхностей. Луч направлен на одну из стен. Продолжайте добавлять зеркало. Главное, чтобы последнее направляло луч на фоторезистор.

Так как система состоит из одного непрерывного лазера, любое препятствие на пути включит сигнализацию.

Приятным преимуществом такой сигнализации является способность охватить значительное пространство, если дополнить ее системой зеркал. Луч будет пересекать пространство по множеству каналов, контролируя малейшие участки площадки.

Для увеличение длительности работы замените батарейки более мощными или аккумуляторами.

Может вам хочется научиться разбираться в принципе работы электросхем на примере ?

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!