Мода и стиль. Красота и здоровье. Дом. Он и ты

Нестандартное использование плат защиты li ion акб. Защита автомобильных аккумуляторов от перезарядки

Возникла у меня необходимость защиты аккумулятора от глубокого разряда. И основное требование к схеме защиты, что бы после разряда аккумулятора, она отключила нагрузку, и не смогла ее самостоятельно включить, после того как аккумулятор немного наберет напряжение на клеммах, без нагрузки.

За основу схемы здесь взят 555-й таймер, включенный в качестве генератора одиночного импульса, который после достижения минимального порогового напряжения, закроет затвор транзистора VT1 и отключит нагрузку. Схема сможет включить нагрузку только после отключения, и повторного подключения питания.

Плата (Зеркалить не нужно):

Плата SMD (Нужно зеркалить):

Все SMD резисторы — 0805. Корпус MOSFET — D2PAK, но можно и DPAK.

При сборке, стоит обратить внимание на то, что под микросхемой (в плате на DIP компонентах) есть перемычка и про нее главное не забыть!

Настраивается схема следующим образом: резистор R5 выставляется в верхнее по схеме положение, далее подключаем ее к источнику питания с выставленным на нем напряжением, при котором она должна отключить нагрузку. Если верить википедии , то напряжение полностью разряженного 12-и Вольтового аккумулятора соответствует 10,5 Вольт, это и будет нашим напряжением отключения нагрузки. Далее вращаем регулятор R5 до тех пор, пока нагрузка не отключится. Вместо транзистора IRFZ44 можно использовать практически любой мощный низковольтный MOSFET, необходимо только учитывать, что он должен быть рассчитан на ток, раза в 2 больше, чем будет максимальный ток нагрузки, а напряжение затвора должно быть в пределах напряжения питания.

При желании, подстроечный резистор можно заменить на постоянный, номиналом 240 кОм и при этом резистор R4 необходимо заменить на 680 кОм. При условии, что порог у TL431 2,5 Вольта.

Потребляемый ток платой — около 6-7 mA.

Защита литий-ионных аккумуляторов (Li-ion). Я думаю, что многие из вас знают, что, например, внутри аккумулятора от мобильного телефона имеется ещё и схема защиты (контроллер защиты), которая следит за тем, чтобы аккумулятор (ячейка, банка, итд…) не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания. Когда аккумулятор исчерпывает свой срок службы, из него можно достать плату контроллера защиты, а сам аккумулятор выбросить. Плата защиты может пригодиться для ремонта другого аккумулятора, для защиты банки (у которой нету схем защиты), либо же просто можно подключить плату к блоку питания, и поэкспериментировать с ней.

У меня имелось много плат защиты от пришедших в негодность аккумуляторов. Но поиск в инете по маркировкам микросхем ничего не давал, словно микросхемы засекречены. В инете находилась документация только на сборки полевых транзисторов, которые имеются в составе плат защиты. Давайте посмотрим на устройство типичной схемы защиты литий-ионного аккумулятора. Ниже представлена плата контроллера защиты, собранная на микросхеме контроллера с обозначением VC87, и транзисторной сборке 8814 ():

На фото мы видим: 1 - контроллер защиты (сердце всей схемы), 2 - сборка из двух полевых транзисторов (о них напишу ниже), 3 - резистор задающий ток срабатывания защиты (например при КЗ), 4 - конденсатор по питанию, 5 - резистор (на питание микросхемы-контроллера), 6 - терморезистор (стоит на некоторых платах, для контроля температуры аккумулятора).

Вот ещё один вариант контроллера (на этой плате терморезистор отсутствует), собран он на микросхеме с обозначением G2JH, и на транзисторной сборке 8205A ():

Два полевых транзистора нужны для того, чтобы можно было отдельно управлять защитой при заряде (Charge) и защитой при разряде (Discharge) аккумулятора. Даташиты на транзисторы находились практически всегда, а вот на микросхемы контроллеров - ни в какую!! И на днях вдруг я наткнулся на один интересный даташит на какой-то контроллер защиты литий-ионного аккумулятора ().

И тут, откуда не возьмись, явилось чудо - сравнив схему из даташита со своими платами защиты, я понял: Схемы совпадают, это одно и то же, микросхемы-клоны! Прочитав даташит, можно применять подобные контроллеры в своих самоделках, а поменяв номинал резистора, можно увеличить допустимый ток, который может отдать контроллер до срабатывания защиты.

Как часто мы забываем выключить нагрузку от аккумулятора… Вы никогда не задумывались над этим вопросом… А ведь часто так бывает вроде работает-работает АКБ, а тут что то высох… Меряем на нем напряжение, а там 9-8В, а то и меньше. Торба, востановить аккумуляторную батарею можно попробовать, но не всегда выходит.
По этому поводу было придумано устройство, которое при разрядке аккумулятора будет отключать от него нагрузку и предотвратит глубокую разрядку АКБ, ведь не секрет, что АКБ боятся глубокого разряда.
Если честно, я думал много раз об устройстве защиты аккумулятора от глубокого разряда, но никак не судьба было все попробовать. И вот на выходных поставил цель сделать небольшую схему защиты

Схема защиты аккумулятора от полного разряда

Кнопки Start и Stop любые без фиксации

Рассмотрим схему. Как видите все построено на двух ОУ включенных в режиме компаратора. Для эксперимента была взята LM358. И так поехали…
Опорное напряжение формируется цепочкой R1-VD1. R1 балластный резистор, VD1 – простейший стабилитрон 5В, можно и на большее-меньшее напряжение. Но не больше и не равное напряжению разряженного АКБ, которое равно кстати 11В.

На первом ОУ был собран компаратор, сравнивающий опорное напряжение с напряжением аккумулятора. Напряжение на 3 ногу подается от АКБ через резисторный делитель, который и создает сравниваемое напряжение. Если на делителе напряжение приравнивается к опорному, на первой ножке появляется положительное напряжение, которое открывает транзисторы, которые поставлены как усилительный каскад, что бы не нагружать выход ОУ.

Настраивается все просто. Подаем на клемму Out — 11В. Именно на эту ногу, потому что на диоде идет падение на 0,6В и потом придется перестраивать схему. Диод нужен, что бы при нажатии на кнопку старт, ток не уходил в нагрузку, а подавал напряжение на саму схему. Подбором резисторов R2R6 ловим момент, когда реле будет отключаться, на 7 ноге пропадет напряжение, а на 5 ноге напряжение должно быть чуть меньше опорного

Когда отстроили первый компаратор, подаем напряжение 12В, как и положено, на клемму Vcc и жмем Start. Схема должна включится и работать без проблем, пока напряжение не упадет до 10,8В, схема должна отключить реле нагрузки.

Нажимаем Стоп, на 5 ноге пропадет напряжение и схема отключится. Кстати C1 лучше не ставить большего наминала, поскольку он будет долго разряжаться и придется держать кнопку STOP дольше. Кстати пока не придумал как заставить схему сразу отключаться, если на самой нагрузке стоит хорошая емкость, которая будет дольше разряжаться, хотя можно и на сам кондер балластный резистор кинуть

На втором Оу было решено собрать индикатор указывающий когда АКБ почти разряжен и схема должна отключиться. Настраивается так же… Подаем на Out – 11,2В и подбором R8R9 добиваемся, что бы загорался красный светодиод
На этом настройка заканчивается и схема полностью работоспособна…

Удачи всем с повторением…
Для безопасной, качественной и надежной зарядки любых типов аккумуляторов, рекомендую

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках , так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20А\ч, АКБ 9А\ч зарядит за 7 часов, 20А\ч — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80А\Ч. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%.
На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.
Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. Евровилку

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и СА\СА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150А\ч

Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку

Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.
Автор Статьи: Admin-чек

Создавая устройства с автономным питанием необходимо позаботиться о защите аккумулятора от глубокого разряда. Достаточно один раз упустить момент и допустить глубокую разрядку акб ниже минимального порога напряжения и ваш аккумулятор выйдет из строя, либо потеряет часть емкости и окажется неспособен работать на номинальных токах нагрузки.

С целью предотвращения случаев снижения напряжения ниже критической отметки в разрыв цепи акб- потребитель устанавливают схемы защиты, которые состоят из нескольких узлов:
компаратора и силового ключа.

Требования к схеме защиты:

  • малый ток утечки (собственное потребление)
  • коммутация токов сравнимых с максимально допустимыми для АКБ

Данная схема защиты от глубокого разряда аккумулятора собиралась для защиты кислотно-гелевого 6 вольтового АКБ емкостью 4 ампер-часа, но она может быть настроена и на работу с 12 вольтовыми акб и выше, вплоть до напряжения питания микросхемы ne7555. Прообразом этой платы, была найденная в каком-то журнале и немного измененная. Вместо обычного стабилитрона, был введен регулируемый стабилитрон TL431 который позволяет настраивать напряжение отсечки (отключения нагрузки) в совокупности с подстройкой резистивного делителя R6/R7. С 3-ей ножки микросхемы таймера 555 сигнал стал не засвечивать светодиод, а открывать n-p-n транзистор, который в свою очередь открывает силовой ключ N-channel полевой транзистор. Обратите ваше внимание на характеристики данного транзистора, он должен быть рассчитан на работу с предполагаемыми токами нагрузки, и еще немаловажная деталь- это напряжение открытия затвора. Если вы планируете схему для 6 вольтового акб вам необходим полевой транзистор с напряжением открытия 5 вольт n-channel logic level mosfet. Полевые транзисторы «общего силового» назначения с напряжением открытия 10-20 вольт вам не подойдут, так как при напряжении между затвором и истоком транзистора 5 вольт они будут находиться не в режиме насыщения а в линейном режиме, что приведет к сильному тепловыделению и выходу из строя.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!