Мода и стиль. Красота и здоровье. Дом. Он и ты

Найти радиус описанной окр. Окружность, описанная около треугольника

Вам понадобится

  • Треугольник с заданными параметрами
  • Циркуль
  • Линейка
  • Угольник
  • Таблица синусов и косинусов
  • Математические понятия
  • Определение высоты треугольника
  • Формулы синусов и косинусов
  • Формула площади треугольника

Инструкция

Начертите треугольник с нужными параметрами. Треугольник либо по трем сторонам, либо по двум сторонам и углу между ними, либо по стороне и двум прилежащим к ней углам. Обозначьте вершины треугольника как А, В и С, углы - как α, β, и γ, а противолежащие вершинам углом стороны - как а, b и c.

Проведите ко всем сторонам треугольника и найдите точку их пересечения. Обозначьте высоты как h с соответствующими сторонам индексами. Найдите точку их пересечения и обозначьте ее О. Она и будет являться центром окружности. Таким образом, радиусами этой окружности будут являться отрезки ОА, ОВ и ОС.

Радиус найти по двум формулам. Для одной вам необходимо сначала вычислить . Она равна всех сторон треугольника на синус любого из углов, деленному на 2.

В этом случае радиус описанной окружности вычисляется по формуле

Для другой достаточно длину одной из сторон и синус противолежащего угла.

Вычислите радиус и опишите треугольника окружность.

Полезный совет

Вспомните, что такое высота треугольника. Это перпендикуляр, проведенный из угла к противолежащей стороне.

Площадь треугольника может быть представлена и как произведение квадрата одной из сторон на синусы двух прилежащих углов, деленное на удвоенный синус суммы этих углов.
S=а2*sinβ*sinγ/2sinγ

Источники:

  • таблица с радиусами описанной окружности
  • Радиус окружности, описанной около равностороннего

Считается описанной вокруг многоугольника в том случае, если она касается всех его вершин. Что примечательно, центр подобной окружности совпадает с точкой пересечения перпендикуляров, проведенных из середин сторон многоугольника. Радиус описанной окружности полностью зависит от того многоугольника, вокруг которого она описана.

Вам понадобится

  • Знать стороны многоугольника, его площадь/периметр.

Инструкция

Обратите внимание

Вокруг многоугольника можно описать окружность только в том случае, если он правильный, т.е. все его стороны равны и все его углы равны.
Тезис, гласящий, что центром описанной вокруг многоугольника окружности является пересечение его серединных перпендикуляров, справедлив для всех правильных многоугольников.

Источники:

  • как найти радиус многоугольника

Если для многоугольника удается построить и описанную окружности, то площадь этого многоугольника меньше площади описанной окружности, но больше площади вписанной окружности. Для некоторых многоугольников известны формулы для нахождения радиуса вписанной и описанной окружностей.

Инструкция

Вписанной в многоугольник окружность, касающаяся всех сторон многоугольника. Для треугольника радиуса окружности: r = ((p-a)(p-b)(p-c)/p)^1/2, где p - полупериметр; a, b, c - стороны треугольника. Для формула упрощается: r = a/(2*3^1/2), а - сторона треугольника.

Описанной вокруг многоугольника называется такая окружность, на которой лежат все вершины многоугольника. Для треугольника радиус находится по формуле: R = abc/(4(p(p-a)(p-b)(p-c))^1/2), где p - полупериметр; a, b, c - стороны треугольника. Для правильного проще: R = a/3^1/2.

Для многоугольников не всегда возможно выяснить соотношение радиусов вписанных и и длин его сторон. Чаще ограничиваются построением таких окружностей около многоугольника, а затем физического радиуса окружностей с помощью измерительных приборов или векторного пространства.
Для построения описанной окружности выпуклого многоугольника строят биссектрисы двух его углов, на их пересечении лежит центр описанной окружности. Радиусом будет расстояние от точки пересечения биссектрис до вершины любого угла многоугольника. Центр вписанной на пересечении перпендикуляров, построенных вовнутрь многоугольника из центров сторон (эти перпендикуляры срединными). Достаточно построить два таких перпендикуляра. Радиус вписанной окружности равен расстоянию от точки пересечения срединных перпендикуляров до стороны многоугольника.

Видео по теме

Обратите внимание

В произвольно заданный многоугольник нельзя вписать окружность и описать окружность вокруг него.

Полезный совет

В четырехугольник можно вписать окружность, если a+c = b+d, где a, b, с, d - стороны четырехугольника по порядку. Вокруг четырехугольника можно описать окружность, если противоположные его углы в сумме дают 180 градусов;

Для треугольника такие окружности всегда существуют.

Совет 4: Как найти по трем сторонам площадь треугольника

Поиск площади треугольника - одна из самых распространенных задач школьной планиметрии. Знания трех сторон треугольника достаточно для определения площади любого треугольника. В частных случаях и равностороннего треугольников достаточно знать длины двух и одной стороны соответственно.

Вам понадобится

  • длины сторон треугольников, формула Герона, теорема косинусов

Инструкция

Формула Герона для площади треугольника следующим образом: S = sqrt(p(p-a)(p-b)(p-c)). Если расписать полупериметр p, то получится: S = sqrt(((a+b+c)/2)((b+c-a)/2)((a+c-b)/2)((a+b-c)/2)) = (sqrt((a+b+c)(a+b-c)(a+c-b)(b+c-a)))/4.

Можно вывести формулу для площади треугольника и из соображений, например, применив теорему косинусов.

По теореме косинусов AC^2 = (AB^2)+(BC^2)-2*AB*BC*cos(ABC). Используя введенные обозначения, эти можно также в виде: b^2 = (a^2)+(c^2)-2a*c*cos(ABC). Отсюда, cos(ABC) = ((a^2)+(c^2)-(b^2))/(2*a*c)

Площадь треугольника находится также по формуле S = a*c*sin(ABC)/2 через две стороны и угол между ними. Синус угла ABC можно выразить через его с помощью основного тригонометрического тождества: sin(ABC) = sqrt(1-((cos(ABC))^2). Подставляя синус в формулу для площади и расписывая его, можно прийти к формуле для площади треугольника ABC.

Видео по теме

Три точки, однозначно определяющие треугольник в Декартовой системе координат - это его вершины. Зная их положение относительно каждой из координатных осей можно вычислить любые параметры этой плоской фигуры, включая и ограничиваемую ее периметром площадь . Это можно сделать несколькими способами.

Инструкция

Используйте формулу Герона для расчета площади треугольника . В ней задействованы размеры трех сторон фигуры, поэтому вычисления начините с . Длина каждой стороны должна быть равна корню из суммы квадратов длин ее проекций на координатные оси. Если обозначить координаты A(X₁,Y₁,Z₁), B(X₂,Y₂,Z₂) и C(X₃,Y₃,Z₃), длины их сторон можно выразить так: AB = √((X₁-X₂)² + (Y₁-Y₂)² + (Z₁-Z₂)²), BC = √((X₂-X₃)² + (Y₂-Y₃)² + (Z₂-Z₃)²), AC = √((X₁-X₃)² + (Y₁-Y₃)² + (Z₁-Z₃)²).

Для упрощения расчетов введите вспомогательную переменную - полупериметр (Р). Из , что это половина суммы длин всех сторон: Р = ½*(AB+BC+AC) = ½*(√((X₁-X₂)² + (Y₁-Y₂)² + (Z₁-Z₂)²) + √((X₂-X₃)² + (Y₂-Y₃)² + (Z₂-Z₃)²) + √((X₁-X₃)² + (Y₁-Y₃)² + (Z₁-Z₃)²).

Рассчитайте площадь (S) по формуле Герона - извлеките корень из произведения полупериметра на разность между ним и длиной каждой из сторон. В общем виде ее можно записать так: S = √(P*(P-AB)*(P-BC)*(P-AC)) = √(P*(P-√((X₁-X₂)² + (Y₁-Y₂)² + (Z₁-Z₂)²))*(P-√((X₂-X₃)² + (Y₂-Y₃)² + (Z₂-Z₃)²))*(P-√((X₁-X₃)² + (Y₁-Y₃)² + (Z₁-Z₃)²)).

Для практических расчетов удобно пользоваться специализированными -калькуляторами. Это скрипты, размещенные на серверах некоторых сайтов, которые проделают все необходимые расчеты на основе координат, введенных вами в соответствующую форму. Единственный такого сервиса - он не дает объяснений и обоснований для каждого шага вычислений. Поэтому, если вас интересует только конечный результат, а не вычисления в общем виде, перейдите, например, на страницу http://planetcalc.ru/218/.

В поля формы введите каждую координату каждой из вершин треугольника - они здесь как Ax, Ay, Az и т.д. Если треугольник задан двухмерными координатами, в поля - Az, Bz и Cz - пишите ноль. В поле «Точность вычисления» установите нужное число знаков после запятой, кликая мышкой плюса или минуса. Помещенную под формой оранжевую кнопку «Рассчитать» нажимать не обязательно, вычисления будут произведены и без этого. Ответ вы найдете рядом с надписью «Площадь треугольника » - она размещена сразу под оранжевой кнопкой.

Источники:

  • найдите площадь треугольника с вершинами в точках

Иногда около выпуклого многоугольника можно начертить таким образом, чтобы вершины всех углов лежали на ней. Такую окружность по отношению к многоугольнику надо называть описанной. Ее центр не обязательно должен находиться внутри периметра вписанной фигуры, но пользуясь свойствами описанной окружности , найти эту точку, как правило, не очень трудно.

Вам понадобится

  • Линейка, карандаш, транспортир или угольник, циркуль.

Инструкция

Если многоугольник, около которого нужно описать окружность, начерчен на бумаге, для нахождения центр а круга достаточно линейки, карандаша и транспортира либо угольника. Измерьте длину любой из сторон фигуры, определите ее середину и поставьте в этом месте чертежа вспомогательную точку. С помощью угольника или транспортира проведите внутри многоугольника перпендикулярный этой стороне отрезок до пересечения с противоположной стороной.

Проделайте эту же операцию с любой другой стороной многоугольника. Пересечение двух построенных отрезков и будет искомой точкой. Это вытекает из основного свойства описанной окружности - ее центр в выпуклом многоугольнике с любым сторон всегда лежит в точке пересечения серединных перпендикуляров, проведенных к этим

Очень часто при решении геометрических задач приходится совершать действия со вспомогательными фигурами. Например, находить радиус вписанной или описанной окружности и т.д. Данная статья покажет, как находить радиус окружности, описанной около треугольника. Или, иными словами, радиус окружности, в которую вписан треугольник.

Как найти радиус окружности, описанной около треугольника – общая формула

Общая формула выглядит следующим образом: R = abc/4√p(p – a)(p – b)(p – c), где R – радиус описанной окружности, p – периметр треугольника поделенный на 2 (полупериметр). a, b, c – стороны треугольника.

Найти радиус описанной окружности треугольника, если a = 3, b = 6, c = 7.

Таким образом, исходя из вышеприведенной формулы, вычисляем полупериметр:
p = (a + b + c)/2 = 3 + 6 + 7 = 16. => 16/2 = 8.

Подставляем значения в формулу и получаем:
R = 3 × 6 × 7/4√8(8 – 3)(8 – 6)(8 – 7) = 126/4√(8 × 5 × 2 × 1) = 126/4√80 = 126/16√5.

Ответ: R = 126/16√5

Как найти радиус окружности, описанной около равностороннего треугольника

Для нахождения радиуса окружности, описанной около равностороннего треугольника, существует довольно простая формула: R = a/√3, где a – величина его стороны.

Пример: Сторона равностороннего треугольника равна 5. Найти радиус описанной окружности.

Так как у равностороннего треугольника все стороны равны, для решения задачи нужно всего лишь вписать ее значение в формулу. Получим: R = 5/√3.

Ответ: R = 5/√3.


Как найти радиус окружности, описанной около прямоугольного треугольника

Формула выглядит следующим образом: R = 1/2 × √(a² + b²) = c/2, где a и b – катеты и c – гипотенуза. Если сложить квадраты катетов в прямоугольном треугольнике, то получим квадрат гипотенузы. Как видно из формулы, данное выражение находится под корнем. Вычислив корень из квадрата гипотенузы, мы получим саму длину. Умножение получившегося выражения на 1/2 в итоге приводит нас к выражению 1/2 × c = c/2.

Пример: Вычислить радиус описанной окружности, если катеты треугольника равны 3 и 4. Подставим значения в формулу. Получим: R = 1/2 × √(3² + 4²) = 1/2 × √25 = 1/2 × 5 = 2.5.

В данном выражение 5 – длина гипотенузы.

Ответ: R = 2.5.


Как найти радиус окружности, описанной около равнобедренного треугольника

Формула выглядит следующим образом: R = a²/√(4a² – b²), где a – длина бедра треугольника и b – длина основания.

Пример: Вычислить радиус окружности, если его бедро = 7, а основание = 8.

Решение: Подставляем в формулу данные значения и получаем: R = 7²/√(4 × 7² – 8²).

R = 49/√(196 – 64) = 49/√132. Ответ можно записать прямо так.

Ответ: R = 49/√132


Онлайн ресурсы для вычисления радиуса окружности

Можно очень легко запутаться во всех этих формулах. Поэтому при необходимости можно воспользоваться онлайн калькуляторами, которые помогут вам в решении задач на нахождение радиуса. Принцип работы таких мини-программ очень прост. Подставляете значение стороны в соответствующее поле и получаете готовый ответ. Можно выбрать несколько вариантов округления ответа: до десятичных, сотых, тысячных и т.д.

Треугольник называется вписанным, если все его вершины лежат на окружности. В этом случае окружность называется описанной вокруг треугольника. Расстояние от ее центра до каждой вершины треугольника будет одинаковым и равным радиусу этой окружности. Вокруг любого треугольника можно описать окружность, но только одну.

Центр описанной окружности будет лежать в точке пересечения серединных перпендикуляров, проведенных к каждой из сторон треугольника. Если окружность описана вокруг прямоугольного треугольника, то ее центр будет лежать на середине гипотенузы. Для любого треугольника, вокруг которого описана окружность действует формула площади треугольника через радиус описанной окружности:

в которой a,b,c – стороны треугольника, а R – радиус описанной окружности.

Пример расчета площади треугольника через радиус описанной окружности:
Пусть дан треугольник со сторонами a = 5 см, b = 6 см, c = 4 см. Вокруг него описана окружность с R = 3 см. найдите площадь.
Имея все требуемые данные, просто подставляем значения в формулу:

Площадь треугольника будет равна 10 кв. см

Довольно часто по условиям можно встретить данную площадь описанной окружности, которую необходимо использовать для нахождения площади вписанного треугольника. Формула площади треугольника через площадь описанной окружности находится после вычисления радиуса. Его можно вычислить несколькими способами. Для начала рассмотрим формулу площади окружности:
Преобразовав эту формулу, мы получим, что радиус:
Используя эту формулу, мы получаем, что зная площадь описанной окружности, можно найти площадь треугольника следующим способом:

Зная все три стороны заданного треугольника можно применить для нахождения площади . Из нее же можно найти и радиус описанной окружности. То есть если в условиях даны все стороны треугольника и требуется поиск площади через радиус описанной окружности, мы сначала должны вычислить его по формуле:

То есть, зная длины всех сторон треугольника, мы можем найти площадь треугольника через радиус описанной окружности.

Пример расчета площади треугольника через площадь описанной окружности:
Дан треугольник, вокруг которого описана окружность с площадью 8 кв. см. Стороны треугольника a = 4см, b = 3 см, c = 5 см. Для начала найдем радиус окружности через ее площадь:

Попробуем найти радиус по другой формуле, которую мы вывели из способа нахождения

В современном машиностроении используется масса элементов и запчастей, которые имеют в своей структуре как внешние окружности, так и внутренние. Самым ярким примером могут служить корпус подшипника, детали моторов, узлы ступицы и многое другое. При их изготовлении применяются не только высокотехнологичные приспособления, но и знания из геометрии, в частности информация об окружностях треугольника. Более детально с подобным знаниями познакомимся ниже.

Вконтакте

Какая окружность вписана, а какая описана

Прежде всего вспомним, что окружностью называется бесконечное множество точек, удаленных на одинаковом расстоянии от центра . Если внутри многоугольника допускается построить окружность, которая с каждой стороной будет иметь только одну общую точку пересечения, то она будет называться вписанной. Описанной окружностью (не круг, это разные понятия) называется такое геометрическое место точек, при котором у построенной фигуры с заданным многоугольником общими точками будут только вершины многоугольника. Ознакомимся с этими двумя понятиями на более наглядном примере (см. рис 1.).

Рисунок 1. Вписанная и описанная окружности треугольника

На изображении построены две фигуры большого и малого диаметров, центры которых находятся G и I. Окружность большего значения называется описанной окр-тью Δ ABC, а малого – наоборот, вписанной в Δ ABC.

Для того чтобы описать вокруг треугольника окр-ть, требуется провести через середину каждой стороны перпендикулярную прямую (т.е. под углом 90°) – это точка пересечения, она играет ключевую роль. Именно она будет представлять собой центр описанной окружности. Перед тем как найти окружность, ее центр в треугольнике, требуется построить для каждого угла , после чего выделить точку пересечения прямых. Она в свою очередь будет центром вписанной окр-ти, а ее радиус при любых условиях будет перпендикулярен любой из сторон.

На вопрос:«Какое количество окружностей вписанных может быть для многоугольника с тремя ?» ответим сразу, что в любой треугольник можно вписать окружность и притом только одну. Потому что существует только одна точка пересечения всех биссектрис и одна точка пересечения перпендикуляров, исходящих из середин сторон.

Свойство окружности, которой принадлежат вершины треугольника

Описанная окружность, которая зависит от длин сторон при основании, имеет свои свойства. Укажем свойства описанной окружности:

Для того чтобы более наглядно понять принцип описанной окружности, решим простую задачу. Допустим, что дан треугольник Δ ABC, стороны которого равны 10, 15 и 8,5 см. Радиус описанной окружности около треугольника (FB) составляет 7,9 см. Найти значение градусной меры каждого угла и через них площадь треугольника.

Рисунок 2. Поиск радиуса окружности через отношение сторон и синусов углов

Решение: опираясь на ранее указанную теорему синусов, найдем значение синуса каждого угла в отдельности. По условию известно, что сторона АВ равна 10 см. Вычислим значение С:

Используя значения таблицы Брадиса, узнаем, что градусная мера угла С равна 39°. Таким же методом найдем и остальные меры углов:

Откуда узнаем, что CAB = 33°, а ABC = 108°. Теперь, зная значения синусов каждого из углов и радиус, найдем площадь, подставляя найденные значения:

Ответ: площадь треугольника равна 40,31 см², а углы равны соответственно 33°, 108° и 39°.

Важно! Решая задачи подобного плана, будет нелишним всегда иметь таблицы Брадиса либо соответствующее приложение на смартфоне, так как вручную процесс может затянуться на длительное время. Также для большей экономии времени не требуется обязательно строить все три середины перпендикуляра либо три биссектрисы. Любая третья из них всегда будет пересекаться в точке пересечения первых двух. А для ортодоксального построения обычно третью дорисовывают. Может, это неправильно в вопросе алгоритма, но на ЕГЭ или других экзаменах это здорово экономит время.

Исчисление радиуса вписанной окружности

Все точки окружности одинаково удалены от ее центра на одинаковом расстоянии. Длину этого отрезка (от и до) называют радиусом. В зависимости от того, какую окр-ть мы имеем, различают два вида – внутренний и внешний. Каждый из них вычисляется по собственной формуле и имеет прямое отношение к вычислению таких параметров, как:

  • площадь;
  • градусная мера каждого угла;
  • длины сторон и периметр.

Рисунок 3. Расположение вписанной окружности внутри треугольника

Вычислить длину расстояния от центра до точки соприкосновения с любой из сторон можно такими способами: через стороны, боковые стороны и углы (для равнобокого треугольника).

Использование полупериметра

Полупериметром называется половина суммы длин всех сторон. Такой способ считается самым популярным и универсальным, потому как независимо от того, какой тип треугольника дан по условию, он подходит для всех. Порядок вычисления имеет следующий вид:

Если дан «правильный»

Одним из малых преимуществ «идеального» треугольника является то, что вписанная и описанная окружности имеют центр в одной точке . Это удобно при построении фигур. Однако в 80% случаев ответ получается «некрасивым». Тут имеется ввиду, что очень редко радиус вписанной окр-ти будет целым , скорее наоборот. Для упрощенного исчисления используется формула радиуса вписанной окружности в треугольник:

Если боковины одинаковой длины

Одним из подтипов задач на гос. экзаменах будет нахождение радиуса вписанной окружности треугольника, две стороны которого равны между собой, а третья нет. В таком случае рекомендуем использовать этот алгоритм, который даст ощутимую экономию времени на поиск диаметра вписанной окр-ти. Радиус вписанной окружности в треугольник с равными «боковыми» вычисляется по формуле:

Более наглядное применение указанных формул продемонстрируем на следующей задаче. Пускай имеем треугольник (Δ HJI), в который вписана окр-ть в точке K. Длина стороны HJ = 16 см, JI = 9,5 см и сторона HI равна 19 см (рисунок 4). Найти радиус вписанной окр-ти, зная стороны.

Рисунок 4. Поиск значения радиуса вписанной окружности

Решение: для нахождения радиуса вписанной окр-ти найдем полупериметр:

Отсюда, зная механизм вычисления, узнаем следующее значение. Для этого понадобятся длины каждой из сторон (дано по условию), а также половину периметра, получается:

Отсюда следует, что искомый радиус равен 3,63 см. Согласно условию, все стороны равны, тогда искомый радиус будет равен:

При условии, если многоугольник равнобокий (например, i = h = 10 см, j = 8 см), диаметр внутренней окр-ти с центром в точке K будет равен:

В условии задачи может даваться треугольник с углом 90°, в таком случае запоминать формулу нет необходимости. Гипотенуза треугольника будет равна диаметру. Более наглядно это выглядит так:

Важно! Если задана задача на поиск внутреннего радиуса, не рекомендуем проводить вычисления через значения синусов и косинусов углов, табличное значение которых точно не известно. В случае, если иначе узнать длину невозможно, не пытайтесь «вытащить» значение из-под корня. В 40% задач полученное значение будет трансцендентным (т.е. бесконечным), а комиссия может не засчитать ответ (даже если он будет правильным) из-за его неточности или неправильной формы подачи. Особое внимание уделите тому, как может видоизменяться формула радиуса описанной окружности треугольника в зависимости от предложенных данных. Такие «заготовки» позволяют заранее «видеть» сценарий решения задачи и выбрать наиболее экономное решение.

Радиус внутренней окружности и площадь

Для того чтобы вычислить площадь треугольника, вписанного в окружность, используют лишь радиус и длины сторон многоугольника :

Если в условии задачи напрямую не дано значение радиуса, а только площадь, то указанная формула площади трансформируется в следующую:

Рассмотрим действие последней формулы на более конкретном примере. Предположим, что дан треугольник, в который вписана окр-ть. Площадь окр-ти составляет 4π, а стороны равны соответственно 4, 5 и 6 см. Вычислим площадь заданного многоугольника при помощи вычисления полупериметра.

Используя вышеуказанный алгоритм, вычислим площадь треугольника через радиус вписанной окружности:

В силу того, что в любой треугольник можно вписать окружность, число вариаций нахождения площади значительно увеличивается. Т.е. поиск площади треугольника, включает в себя обязательное знание длины каждой стороны, а также значение радиуса.

Треугольник, вписанный в окружность геометрия 7 класс

Прямоугольные треугольники, вписанные в окружность

Вывод

Из указанных формул можно убедиться, что сложность любой задачи с использованием вписанной и описанной окружностей заключается только в дополнительных действия по поиску требуемых значений. Задачи подобного типа требуют только досконально понимания сути формул, а также рациональности их применения. Из практики решения отметим, что в будущем центр описанной окружности будет фигурировать и в дальнейших темах геометрии, поэтому запускать ее не следует. В противном случае решение может затянуться с использованием лишних ходов и логических выводов.

Тема «Вписанные и описанные окружности в треугольниках» является одной из самых сложных в курсе геометрии. На уроках ей уделяется очень мало времени.

Геометрические задачи этой темы включаются во вторую часть экзаменационной работы ЕГЭ за курс средней школы. Для успешного выполнения этих заданий необходимы твердые знания основных геометрических фактов и некоторый опыт в решении геометрических задач.
Для каждого треугольника существует только одна описанная окружность. Это такая окружность, на которой лежат все три вершины треугольника с заданными параметрами. Найти ее радиус может понадобиться не только на уроке геометрии. С этим приходится постоянно сталкиваться проектировщикам, закройщикам, слесарям и представителям многих других профессий. Для того, чтобы найти ее радиус, необходимо знать параметры треугольника и его свойства. Центр описанной окружности находится в точке пересечения серединных перпендикуляров треугольника.
Предлагаю вашему вниманию все формулы нахождения радиуса описанной окружности и не только треугольника. Формулы для вписанной окружности можно посмотреть .

a, b. с - стороны треугольника,


α - угол, лежащий против стороны a,
S - площадь треугольника ,

p - полупериметр.

Тогда для нахождения радиуса (R ) описанной окружности используют формулы:

В свою очередь площадь треугольника можно вычислить по одной из следующих формул:

А вот еще несколько формул.

1. Радиус описанной окружности около правильного треугольника. Если a сторона треугольника, то

2. Радиус описанной окружности около равнобедренного треугольника. Пусть a, b - стороны треугольника, тогда

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!