Мода и стиль. Красота и здоровье. Дом. Он и ты

Музыкальный качер схема. Качер Бровина - что это такое и каково его практическое применение? Как сделать качер Бровина? Куда это всё засунуть

Развлечения с высоким напряжением доставляют много удовольствия и мало пользы. Это значит нам обязательно нужно собрать что-нибудь такое. Наверное, самая простая схема питания катушки Тесла - это качер Бровина. Его можно собрать на лампе, на обычном или полевом транзисторе. Схема неприхотливая - работает без настройки.

Вокруг кечера Бровина ходят много легенд из-за нестандартной схемы подключения транзистора, который работает в запредельных режимах - совершает пробой внутри себя и сразу же восстанавливается. Не будем описывать сухую теорию, нам нужен лишь результат.

Приведу две схемы подключения качера.
Для транзистора NPN:


Для полевого транзистора:


Решено было собирать вторую схему на полевом транзисторе т.к. других мощных тразнисторов под рукой не было.
Моя схема состояла из: резистора R2 - 2 кОм, резистора R1 - 10 кОм, полевого транзистора VT1 - IRLB8721 (был закреплен на мощном радиаторе т.к. он сильно греется). Схема питалась от 12 Вольт.



Вторичную катушку мотал на канализационной трубе тонким проводом. Примерно 800 витков. Зажал трубу в шуруповерт и наматывал столько сколько влезет.


Первичную обмотку сделал 1,5 витка толстого медного провода. Диаметр намотки лучше делать больше, чем вторичка. Положение и количество витков лучше подбирать опытным путем, что бы подобрать максимальную отдачу по напряжению.


Увеличение мощности разрядов можно добиться не только настройкой антенны, подбором резисторов, но и подключив на вход питания мощный дроссель с конденсатором большой емкости. Повышение питающего напряжение пропорционально увеличивает длину разрядов.


Кечер получился не супер мощный, но для баловства хватило. В воздухе прошибал до 7 мм. Уверенно зажигал газоразрядные лампы в 20 см от обмотки, давал красивые коронарные разряды в лампах накала.






Решено было опробовать первую схему на транзисторе КТ805АМ с теми же номиналами резисторов, что для полевого (2 кОм и 10 кОм). На удивление мощность разрядов возросла в два раза, а в воздухе стабильно горел коронарный разряд. Раз так поперло - оформил установку в виде готового устройства.

В 1987 г., разрабатывая компас по схеме классического блокинг-генератора, автор обнаружил физическое явление нигде не описанное. При наличии ферромагнитного сердечника в трансформаторе отсутствовал гистерезис, и выходные импульсы напряжения превышали по амплитуде Uпитания в 30 и более раз. Компас работал как феррозонд, и информацию об отношении прибора к пространственным осям XYZ можно было снимать в частоте, которая менялась в 5 раз, и в амплитуде напряжений выходных импульсов, которые меняются в пределах 30%.

Применение такого феррозонда в различных устройствах, как измеритель тока в цепи по окружающему проводник, и любому иному магнитному полю, может быть использовано во множестве приложений.

Автор начал исследовать схемы содержащие индуктивности, отталкиваясь от сердечника, и оказалось, что сердечник вообще не при чем, все так же происходит и без сердечника. Любая схема, состоящая хотя бы из одной индуктивности и транзистора может стать генератором импульсов. Особенность такого генератора в феноменальной передаче энергии в трансформаторной связи при отсутствии сердечника. Во вторичной цепи можно получить десятки вольт, сотни миллиампер от маломощного транзистора и это означает, что получено новое средство автоматизации, которым можно развязать гальванически соединенные цепи. Можно преобразовывать неэлектрические величины метры, градусы, граммы, атмосферы и пр. в вольты амперы герцы.

Одну из схем автор использовал для создания электрического выхода к обычному стрелочному манометру. Оборудовал три манометра и организовал испытания на испытательной станции Газпрома. Это был 1993 г. До 1987 автор работал в центральном аппарате Газпрома, и автора еще помнили, хотя после 1987 г. автор там уже не работал. После командировки в Афганистан по линии Газпрома, у автора были деньги, и автор работал у себя дома только по изобретательской части.

По распоряжению Главка Газпрома были проведены трехсуточные испытания 3-х манометров которые показали, что при +_50 градусах температуры, отклонения показаний электровыхода остаются в пределах класса 1.5, повторяемость измерений идеальная. Есть нелинейности в начале и конце шкалы, это из за того, что все делалось в домашних условиях по геометрии, без нагнетания давления в манометр. Внедрить манометр в Газпром и даже попробовать в боевых условиях не удалось, требовался сертификат на взрывобезопасность, а это тогда делалось на Украине.

Автор запатентовал в 1993 г. полученное устройство как «Датчик Бровина для измерения перемещений» и получил патенты на 7 приложений манометр и прочие датчики. Рассмотрение продолжалось 4 года в разных отделах. Имя автора было присвоено, вопреки закону, как отличительный признак. Получив первый патент «Манометр», безуспешно пробовал внедрить его в других местах Теплосети, ГРЭС, з-д Манометр. Тогда автор совсем не понимал принципа действия устройства. Но приемы и методы получения заданного результата отработал.

Это схема генератора на транзисторе в котором происходит качер процесс. Особенность ее в том, что теоретически он работать не должен, поскольку база закорочена, и отсутствует источник базового тока. Тем не менее он работает при ПОС, ООС, и отсутствии ОС.

(а) Токи базы и эмиттера действуют в противоположных направлениях (уменьшение в базе вызывает увеличение в эмиттере), тогда как обычно увеличение одного должно вызывать увеличение другого.
(б)Отрицательный ток в базе свидетельствует о том, что напряжение на эмиттере выше чем на базе, т.е. >0.7В. В базе всегда присутствует напряжение 0.7В (даже если питание всего каскада 0.2В).
(в) На коллекторе в то же время наблюдается напряжение около 0В, и оба перехода прямо смещены.
(г)Напряжение на коллекторе соответствует состоянию открытого транзистора, хотя по всем признакам транзистор не может быть открыт.
(д)Импульсы напряжения на базе и коллекторе измеренные относительно - и + источника питания имеют одинаковый знак.
(е)Импульсам напряжения в коллекторе и базе по времени не соответствует ток.
(ж)Схема работает в большом диапазоне напряжений питания от 0.2В (на кремниевом транзисторе) до температуры плавления пластмассового корпуса транзистора, от повышения напряжения на источнике питания, и роста тока по закону Ома.
(з)В трансформаторной связи с базовой и коллекторной катушками можно получить напряжение превышающее напряжение источника питания, и ток.
Все (а,б,в,г,д,е,ж,з) закономерности требуют объяснения.
(г)Изначально удалось объяснить почему напряжение на коллекторе около 0В.
Нарастающий ток коллектора (эмиттераI31) создает противоЭДС самоиндукции (U-E=0)направленную навстречу напряжению источника питания. В печатной работе «В.И. Бровин Явление передачи энергии индуктивностей через
магнитные моменты вещества, находящегося в окружающем пространстве, и его применение»была представлена версия природы самоиндукции как затрату энергии источника питания на механический поворот магнитных моментов атомов окружающего индуктивность вещества. В случае разрыва цепи магнитные моменты возвращаются в исходное состояние и воздействуют на проводник, по которому до разрыва шел ток, как движущийся контур с током, возбуждая в нем ЭДС самоиндукции. Нарастание тока вначале при соединении цепи, и при разрыве возбуждает и во вторичных цепях токи и напряжения аналогичные тем, что наблюдались в первичных.
(б,в) Существующее во всех случаях с качерами напряжение в базе порядка0.7Вможно объяснить на следующем опыте связанном с PNпереходом и индуктивностью.

Такая закономерность наблюдается во всех сочетаниях PN перехода и индуктивности.
По окончании импульса на аноде диода наблюдаются напряжение 0.7-0.5Ви ниспадающий ток, завершаемые колебательным процессом,.
В трансформаторной связи в это время знак напряжения меняется на противоположный, а направление тока не меняется.
В момент, когда источники энергии обнуляются наблюдается колебательный процесс схожий с самоиндукцией, которая тоже обнулилась.

На первом этапе (клетки 2,3) диод отпирается, ток нарастает штатно.Импульс обрывается до входа в стационарный режим. Накопившиеся за время импульса носители должны рассосаться, и с резистивной нагрузкой в ключах на это уходят наносекунды. В нашем случае на импульс уходит 10мкS,а на рассасывание 20мкS, и все это времяPN переход остается источником напряжения, несмотря на то, что по окончании импульса знак ЭДСсамоиндукцииPN Объяснение такое. Носители, накопившиеся в базе во время импульса, не в состоянии преодолеть потенциальный барьер самоиндукции заднего фронта. Магнитные моменты здесь не мгновенно разворачиваются в исходное состояние. Происходит снижение концентрации носителей в кристалле, что означает частично переход на нижележащий энергетический уровень.Некоторая часть носителей диффундирует через шунт к 0В.Остальные переходят на нижележащий энергетический уровень, и вместо фотона выделяют другой вид энергии выраженный в Вольтах.
Когда в кристалле не останется свободных носителей, что означает полный разрыв цепи оставшиеся магнитные моменты возвращаются в исходное положение, при этом выделяется теперь слабый импульс ЭДС самоиндукции, который совершает колебания реагируя с барьерной емкостью.
Рассмотрим то же самое, но с транзистором.

В установившемся режиме сложно анализировать процессы происходящие в качере. Это следует делать в переходном процессе от начала действия. В кремниевых транзисторах качер процесс наблюдается начиная от 0.08В, но этого следует добиваться специально. Обычно качер процесс в кремниевых транзисторах начинается с 0.2В. Здесь для наглядности демонстрируется процесс начинающийся с 0.3В. Схема работает от напряжений 0.3В - 0.4В. Генератор прямоугольных импульсов(ГПИ) отпирает базовый переход одиночным импульсом.

На фиг 1 импульс ГПИ повышает Uб до 0.8В. На фиг 2 пока проходил Uи, Uк уменьшилось на 0.1В и после окончания импульса ГПИ(транзистор должен запереться, и Uк стать на уровень Uпит) Uк еще уменьшилось почти до 0В. Uб см. фиг 1 в этом интервале осталось на прежнем уровне. Затем происходит затухающий колебательный процесс. Все эти события происходят при Uпит=0.3В.
Если Uпит увеличить до 0.4В колебательный процесс станет незатухающим фиг 3,4. На шунте наблюдается Iэ фиг 4, который прерывается в моменты возникновения импульсов в коллекторе.
За током Iи импульса фиг 4 появляется "ток утечки" ,"рассасывания"(оба термина означают одно и то же) индицирующий состояние при котором Uк уменьшилось, а Uб фиг 3 осталось на прежнем уровне. В дальнейшем это периодически повторяющийся процесс который с увеличением Uпит действует с нарастающей интенсивностью.
Объяснение такое. Появление тока в кристалле вызванное инжекцией эмиттера прерывается с переходом Uи к 0В. Свободные носители выносятся через коллектор и Uк = Uпит - E. В кристалле транзистора возникает перепад напряжений на коллекторе 0В на базе 0.7В на эмиттере >0.7В, и по этому ток базы имеет отрицательный знак. Так продолжается до тех пор пока все носители не будут вынесены через коллектор и кристалл на некоторый временной интервал станет обладать сопротивление равным бесконечности, что в свою очередь вызовет возврат магнитных моментов в исходное состояние, которое отражается в виде импульсов напряжения в конце каждого периода.
а) Ток базы - это перенос избыточных носителей из области эмиттера в серединную часть кристалла транзистора через базовую индуктивность.
д) Импульсы на базе или коллекторе, измеренные относительно плюса или минуса источника питания, одинаковы по знаку потому, что они измеряются относительно направления вызвавшего их тока.
Все это можно повторить со смещением в базе от источника питания 0.6В.На коллекторе меняется напряжение с 0.3В1.3В и 11.3В и получим такой результат.

Такой метод возбуждения качер процесса позволяет сочетать любые транзисторы с любым сочетанием индуктивностей при большом диапазоне напряжения питания. При этом следует соблюдать правило положительной обратной связи. Начала базовой катушки находится на базе, начало коллекторной катушки всегда находится на источнике питания.
Качер процесс удается реализовать на полевых, биполярных транзисторах, и на радиолампах.

Качером следует считать устройство в котором происходят чередования соединения и разрыва электрической цепи в каждом отдельном периоде, без входа во всеми используемый стационарный режим.
С индуктивной нагрузкой в обычном случае в одном интервале этого сделать не удается. Вот что получается, например, в ламповом варианте.

С транзистором будет все то же самое, но сложнее объяснять. Получить новый разрыв цепи, в данном случае, можно только повторив два события- открытие и закрытие лампы.
Качер реализуется в любых обычных схемах с ОБ,ОЭ,ОК, и в экзотических. Вот пример экзотической схемы.

Эта схема работает от 0.7В и создает 40В импульсы, которыми можно заряжать конденсаторы и аккумуляторы.

На вопрос «Зачем все это»? Ответ - это новый способ передачи информации, через механический поворот магнитных моментов атомов (известны способы - звук, свет, электрическая цепь, электромагнитная волна). Это абсолютный датчик. Это трансформатор постоянного тока.
Существует устойчивое мнение - качер это трансформатор Тесла в котором роль конденсатора выполняет источник питания, а роль разрядника выполняет кристалл транзистораКачер - трансформатор Тесла непрерывного действия реализующий передачу энергии по одному проводу, создающий излучение не являющееся не электрическим не магнитным не гравитационным.

В интернете под словами «качер Бровина» подразумевается единственная схема.

Ее используют как источник высоковольтного напряжения. Генератор Тесла-Бровин-Маг. Маг - это ник в интернете.

ГТБМ судя по описаниям и показам может нить лампы накаливания засветить в нескольких отдельных точках. ЛДСзасветиь в свободном состоянии. Разложить воду на составляющие, и ее можно поджечь. Ток с ГТБМ проходит через любые изоляторы. Мощность измеренная на выходе, выше чем на входе, т.е. КПД больше 100%.

Из многочисленных опытов(например, светодиод светится подключенный за одну ножку) следует, что схема вбирает в себя дополнительную энергию из окружающего пространства, пока не понятно почему.

Трансформаторные свойства качера позволяют создать абсолютный датчик преобразующий неэлектрические величины метры градусы в Вольты, Амперы, Герцы напрямую без преобразований.

С такой схемы питающейся от 4В, во вторичной цепи можно получить 20В, 2мА, при удалении одной катушки от другой на 15 - 30 мм. Катушки могут быть любых размеров от микрон до метров.

С такой схемы питающейся от 4В, во вторичной цепи можно получить 20В, 2мА, при удалении одной катушки от другой на 15 - 30 мм. Катушки могут быть любых размеров от микрон до метров.

Трансформаторные свойства качеров позволяют гальванически развязать управляющие на 5В цепи с управляемыми на 220В. Выходной сигнал позволяет управлять тиристором и транзистором в трансформаторной связи.

Качер улучшает свойства светодиодов - они меньше греются, не деградируют, не требуют разделения резисторами.

Качер Бровина является оригинальным вариантом генератора электромагнитных колебаний. Его можно собрать на различных активных радиоэлементах. В настоящий момент при его сборке используют полевые или реже - радиолампы (триоды и пентоды). Качер Бровина был изобретен в 1987 году советским радиоинженером Владимиром Ильичом Бровиным в качестве элемента электромагнитного компаса. Давайте рассмотрим более подробно, что же это за прибор.

Неизвестные возможности полупроводниковых элементов

Качер Бровина - это разновидность генератора, собранного на одном транзисторе и работающего, со слов изобретателя, в нештатном режиме. Прибор демонстрирует таинственные свойства, которые восходят к исследованиям Николы Тесла. Они не вписываются ни в одну из современных теорий электромагнетизма. По всей видимости, качер Бровина представляет собой своеобразный полупроводниковый разрядник, в котором разряд электрического тока проходит в кристаллической основе транзистора, минуя стадию образования (плазмы). Самое интересное в работе устройства - это то, что после пробоя кристалл транзистора полностью восстанавливается. Это объясняется тем, что в основе работы прибора используется обратимый лавинный пробой, в отличие от теплового, который для полупроводника является необратимым. Однако в качестве доказательства данного режима работы транзистора приводят только косвенные утверждения. Никто, кроме самого изобретателя, работу транзистора в описываемом приборе детально не исследовал. Так что это всего лишь предположения самого Бровина. Так, например, для подтверждения «качерного» режима работы устройства изобретатель приводит следующий факт: дескать, независимо от того, какой полярностью к прибору подключить осциллограф, полярность импульсов, показываемая им, будет всегда положительная.

Может, качер - это разновидность блокинг-генератора?

Существует и такая версия. Ведь электрическая схема прибора сильно напоминает генератор электрических импульсов. Тем не менее автор изобретения подчеркивает, что у его устройства существует неочевидное отличие от предлагаемых схем. Он дает альтернативное объяснение протеканию физических процессов внутри транзистора. В блокинг-генераторе полупроводник периодически открывается в результате протекания электрического тока через катушку обратной связи базовой цепи. В качере транзистор так называемым неочевидным способом должен быть постоянно закрыт (т. к. создание электродвижущей силы в подсоединенной к базовой цепи полупроводника катушке обратной связи все равно способно его открыть). При этом ток, образованный накоплением электрических зарядов в базовой зоне для дальнейшего разряда, в момент превышения порогового значения напряжения создает лавинный пробой. Тем не менее транзисторы, используемые Бровиным, не предназначены для функционирования в лавинном режиме. Для этого спроектирован специальный ряд полупроводников. По утверждению изобретателя, можно использовать не только биполярные транзисторы, но и полевые, а также радиолампы, несмотря на то что они имеют принципиально разную физику работы. Это заставляет акцентировать внимание не на исследованиях самого транзистора в качере, а на специфическом импульсном режиме работы всей схемы. По сути, этими исследованиями и занимался Никола Тесла.

Изобретатель о приборе

В 1987 году Бровин занимался проектированием компаса, позволяющего пользователю определять стороны света не посредством зрения, а при помощи слуха. Он планировал использовать изменяющий тон в соответствии с расположением устройства относительно магнитного поля планеты. В качестве основы использовал блокинг-генератор, усовершенствовав его, и полученный прибор впоследствии получил название качер Бровина. Надежная схема генератора оказалась как нельзя кстати: он построен по классическому принципу, только добавлена цепь обратной связи на основе сердечника индуктивности на базе аморфного железа. Оно изменяет магнитную проницаемость при малых величинах напряженности (например, магнитное поле планеты). Звуковой компас срабатывал при изменении ориентации, как было задумано.

Побочный эффект

Анализ свойств собранной схемы выявил некоторые несоответствия в ее работе с общепринятыми понятиями. Оказалось, что сигналы, полученные на электродах полупроводникового транзистора, измеренные осциллографом относительно положительного и отрицательного полюсов источника напряжения, всегда имели одинаковую полярность. Так, транзистор npn выдавал положительный сигнал на коллекторе, а pnp - отрицательный. Вот этим эффектом и интересен качер Бровина. Схема прибора содержит индуктивность, которая в процессе работы устройства имеет сопротивление, близкое к нулевому. Генератор продолжает работать даже при приближении мощного постоянного магнита к сердечнику. Магнит насыщает сердечник, в результате блокинг-процесс должен остановиться из-за прекращения трансформации в цепи обратной связи схемы. При этом в сердечнике не выделялся гистерезис, его не удалось выявить с помощью фигур Лиссажу. Амплитуда импульсов на коллекторе транзистора оказалась в пять раз выше, чем напряжение источника питания.

Качер Бровина: практическое применение

В настоящее время устройство используется в качестве плазменного разрядника для создания импульсов электрического тока без образования дуги в экспериментальных приборах. Чаще всего используется дуэт - качер Бровина и Это обусловлено тем, что возникающая в разряднике дуга, в принципе, служит широкополосным генератором электрических колебаний. Это был единственный прибор для создания высокочастотных импульсов, доступный Николе Тесла. Кроме того, изобретатель создал на основе качера измерительные устройства, которые позволяют определять абсолютную величину между генератором и датчиком излучения.

Ученые разводят руками

Приведенное выше описание прибора и принцип его работы (причем это видно зрительно) противоречат традиционной науке. Сам изобретатель открыто демонстрирует данные противоречия, он просит всех желающих вместе разобраться с парадоксальными измерениями параметров его устройства. Однако позиция открытости в этом вопросе пока не привела к каким-либо результатам, ученые не могут объяснить физические процессы в полупроводнике.

Это важно

Описание эффекта качера Бровина в ближайшем пространстве, возможно, окажется способом разворота спинов атомов окружающих веществ. На это указывает автор изобретения в эксперименте с заключением прибора в стеклянный герметичный сосуд, из которого откачали воздух для снижения уровня давления в нем. В результате опыта никакого сверхъединичного эффекта, который бы позволил классифицировать устройство как нет (за исключением реальных экспериментов по передаче энергии по проводу). Впервые это продемонстрировал Никола Тесла. Однако возможные неверные показания учета мощности объясняются импульсным, весьма негармоничным характером протекания тока в цепях потребления энергии качером. В то время как измерительные приборы типа тестера рассчитаны или на постоянный, или на синусоидальный (гармонический) ток.

Как собрать качер Бровина своими руками

Если, прочитав статью, вы заинтересовались этим прибором, можете собрать его самостоятельно. Устройство настолько простое, что изготовить его сможет даже начинающий радиолюбитель. Качер Бровина (схема приведена ниже) питается от модифицированного сетевого адаптера 12 В, 2 А, потребляет 20 Вт. Он преобразует электрический сигнал в поле частотой 1 Мгц с эффективностью 90%. Для сборки нам потребуется пластиковая труба 80х200 мм. На нее будут намотаны первичные и вторичные обмотки резонатора. Вся электронная часть устройства размещается в середине этой трубы. Данная схема полностью стабильна, она может работать сотни часов без перерыва. Качер Бровина с самозапиткой интересен тем, что способен зажигать не подключенные неоновые лампы на расстоянии до 70 см. Он является замечательным демонстрационным прибором для школьной либо университетской лаборатории, равно как и настольным устройством для развлечения гостей либо для показа фокусов.

Описание сборки электрической схемы

Автор изобретения рекомендует использовать биполярный транзистор КТ902А или КТ805АМ (однако можно собрать качер Бровина на полевом транзисторе). Полупроводниковый элемент необходимо закрепить на мощном радиаторе, предварительно смазав теплопроводной пастой. Можно дополнительно установить кулер. Резисторы допустимо использовать постоянные, а конденсатор С1 вообще исключить. Сначала следует намотать первичную обмотку проводом от 1 мм (4 витка), потом вторичную обмотку проводом не толще 0,3 мм. Обмотка наматывается плотно виток к витку. Для этого прикрепляем её конец к началу трубы и начинаем мотать, промазывая провод клеем ПВА через каждые 20 мм. Достаточно сделать 800 витков. Закрепляем конец и припаиваем к нему изолированный проводник. Обмотки следует наматывать в одну сторону, важно, чтобы они не соприкасались. Далее нужно впаять в верхнюю часть трубы швейную иглу и припаять к ней конец обмотки. Далее спаиваем электрическую схему и помещаем ее вместе с радиатором вовнутрь пластиковой трубы. Вот этот элементарный прибор и есть качер Бровина.

Как сделать «ионный двигатель»?

Запускаем собранное устройство с минимального напряжения - 4 вольта, далее плавно начинаем его повышать, при этом не забывая следить за током. Если вы собрали схему на транзисторе КТ902А, то стример на конце иглы должен появиться на 4 вольтах. С повышением напряжения он будет возрастать. При достижении 16 вольт он превратится в «пушистика». При 18 В увеличится примерно до 17 мм, а при 20 В электрические разряды будут напоминать настоящий ионный двигатель в работе.

Заключение

Как видите, прибор элементарен и не требует больших затрат. Его можно собрать вместе со своим ребенком, ведь дети любят играть с «железками». А здесь двойное преимущество: мало того, что малыш будет при деле, в нем еще и появится уверенность в своих силах. Он сможет участвовать в школьной выставке со своим творением или хвастаться перед друзьями. Кто знает, может, благодаря сборке такой элементарной игрушки у него разовьется интерес к радиоэлектронике, и в будущем уже ваш ребенок будет автором какого-нибудь изобретения.

Предисловие

Этой весной, передо мной стала задача — создать комплект генераторов для проверки устойчивости работы оборудования в условиях воздействия сильных электрических разрядов. Помимо привычных для меня ВЧ-генераторов на транзисторах, дающих, вблизи, хорошую напряженность ВЧ-поля, мне нужен был небольшой источник высокого напряжения. Вот тут я и вспомнил о качере советского радиоинженера Владимира Ильича Бровина — простом устройстве, позволяющем получить необходимое мне высокое напряжение.

Свой первый качер, я собрал еще в начале 2000-х годов. Это было достаточно мощное устройство высотой почти один метр, выдававшее плотный пучок коронных разрядов. Опасная была штука… Волосы начинали шевелиться в паре метров от неё… Но сейчас мне нужна компактная, небольшая катушка, безопасная в применении. Осмотрев имеющиеся у меня материалы и детали, я приступил к работе.

Схема устройства

Схема качера дошла до наших времен практически без изменения и представляет собой блокинг-генератор на одном транзисторе. В настоящее время существует множество вариантов схем данного устройства собранных на лампах, биполярных и полевых транзисторах, но я остановился на самой простой «классической» схеме.

«Классическая» схема качера Бровина

Детали и материалы

Основой устройства являются два основных элемента — катушка с индуктивной связью и транзистор для генерации колебаний. В качестве транзистора был выбран D1761 (первый, попавшийся на глаза и имевший требуемые параметры). В качестве каркаса катушки я использовал отрезок пластиковой трубы из полипропилена диаметром 32 мм и длинной 140 мм. Помимо этого, в закромах нашлась катушка с проводом ПЭВ-2, диаметром 0,15 мм., который я и использовал при изготовлении качера.

Сборка устройства

Отступив от конца трубки 20 мм., я намотал 650 витков провода (намотка — виток к витку в один слой, без перехлестов). При этом длинна намотки катушки L2 составила 105 мм.
К концам провода припаял монтажные провода и закрепил внутри трубки для исключения повреждения обмотки. Всю обмотку покрыл двумя слоями акрилового лака. К верхнему выводу катушки припаял стальную иглу и вывел её через декоративную пластиковую заглушку. Корпус катушки я закрепил на монтажной плате для удобства настройки и размещения катушки L1 .


Компоненты качера Бровина





Катушку L1 я сделал из медной шины, шириной 3 мм. Она наматывается на оправке D 45 мм., всего 5 витков с небольшим шагом. Здесь нужно помнить, что направление намотки витков — такое же, как и у катушки L2. Если направления намотки не будут совпадать — генератор будет потреблять ток, но высокого напряжения на выходе не будет!
Для подключения катушки L1 к схеме я установил винтовой разъем. Получилось просто и удобно.
Так как схема качера содержит всего 5 деталей — я собрал её навесным монтажом, разместив детали на корпусе радиатора.

Настройка устройства

Правильно и аккуратно собранный генератор из исправных компонентов — практически всегда начинает работать. Для получения максимального напряжения, можно попробовать изменить положение и количество витков катушки L1, ориентируясь на величину стримера и потребляемый ток. В моем случае, при напряжении питания 24 вольта, катушка потребляет 0,85 А. Для моей задачи — это оптимально. В некоторых случаях бывает необходим подбор резисторов в цепи базы.


Так как стример у меня не очень большой, то для визуальной индикации работы катушки и наличия высокого напряжения, я добавил на корпус катушки небольшую неоновую лампочку.

Заключение

Качер Бровина — это простое в повторении и интересное устройство для изучения высоковольтных разрядов в различных средах. Интересен и загадочен сам принцип его работы… Ведь напряжения генерируемые высоковольтной катушкой, а это тысячи и десятки тысяч вольт — не выводят из строя транзистор, хотя непосредственно прикладываются к базе этого полупроводникового прибора.
В принципе, этой загадке есть научное объяснение, (и даже не одно), но все равно, сам принцип работы прибора — остается предметом споров среди ученых и экспериментаторов, а также энтузиастов занимающихся поисками Свободной Энергии и изучающими наследие Николы Тесла. Возможно, именно Вы, разгадаете эту загадку…

Вступление и общий принцип работы Качера Бровина

Качер Бровина — это разновидность блокинг-генератора электрических импульсов со сравнительно высокой частотой. Устройство может быть собрано на различных активных элементах, но чаще всего при сборке применяют биполярные или полевые транзисторы. Данный прибор был изобретен инженером Владимиром Ильичом Бровиным в 1987 году. Причем изобретен скорее случайно – Бровин разрабатывал электромагнитный компас, который позволял бы определять стороны света при помощи звука. И в качестве звукового генератора инженер использовал спроектированный им блокинг-генератор с цепью обратной связи. Компас заработал. Но в работе блокинг-генератора были замечены определенные расхождения с некоторыми законами физики (например, с законами Ампера и Био Савара, а также с законом Кирхгофа). Так и появился качер.

Название для своего изобретения Бровин придумал в 1996 году на основе слов «качатель реактивностей». Автор изобретения объясняет принцип работы этого или просто-качера Бровина следующим образом:

В обычном блокинг-генераторе транзистор открывается за счет протекания тока из катушки обратной связи в базовой цепи транзистора. В качере же он неочевидным способом (т.к. в теории появление электродвижущей силы в катушке обратной связи все же может открыть транзистор) будет все время закрыт, а ток образуется за счет накапливания электрических зарядов в базе транзистора для дальнейшего разряда при превышении некоего порогового напряжения (т.н. «лавинный пробой»).

Мнений и отзывов об этом изобретении существует великое множество: от восторженных до скептических. Вот мнение самого изобретателя, взятое с форума http://club.1-info.ru (авторские орфография и пунктуация не сохранены):

Качер – транзисторное (радиоламповое) устройство с феноменальными качествами. Дешевое (стоимость устройства — меньше 1$) и не требующее особых технологий. Знаний о свойствах качеров достаточно для повсеместного применения практически в любых отраслях, включая балет.

С 2005 года тема качеров обсуждалась на множестве форумов (наберите в поисковике «Бровин Владимир Ильич»). Оппозиция полностью подавлена, обращайте внимание на даты — плевки идут до 2006 г.

Признание факта существования нового способа управления транзистором налицо.

Нет применения на практике (есть, но совсем мало). Не пора ли начать, господа предприниматели, на этом зарабатывать, а вам, госдеятели, собирать налоги?

Предваряя вопрос «Почему не сам»? отвечаю: «Потому что 68-й пошел. Поздно, доктор». «Что делать?». Выбрать тему — например, «автоэлектроника» — создать лабораторию и все, что есть электрического в автомобиле, а также в технологии его производства начать переделывать на качеры.

Возможно, когда-нибудь так и будет, но пока изобретение Бровина – лишь забавная игрушка для энтузиастов, не нашедшая массового применения в электронике или промышленности. Теперь перейдем от теории к практике – сделаем качер Бровина своими руками .

Ниже представлена одна из схем данного качера:

Для изготовления качера Бровина нам понадобятся следующие детали:

  • — 1 ферритовое кольцо (высота 0,7-0,8 см, наружный диаметр 1,5-2 см, внутренний диаметр 0,5-0,7 см);
  • — 1 подстроечный резистор на 220Ом 0,25Вт (R1);
  • — 1 резистор на 1кОм 0,5Вт (R2);
  • — 2 транзистора КТ805 (с радиаторами) (VT1, VT2);
  • — 1 выпрямительный диод 1А;
  • — 1 конденсатор 10000 мкФ 50В;
  • — обмоточный провод, толщиной 0,25 мм;
  • — медный провод квадратного сечения, толшиной 1,5 кв. мм (для первичной катушки);
  • — провод квадратного сечения, толщиной 0,5 кв. мм;
  • — небольшой кусок пластиковой (можно картонной, но не металлической или металлопластиковой!) трубки, обычная сантехническая труба толщиной 1-1.5 см и длиной 20-30 см вполне подойдет;
  • — трубка, толщиной 4-7 сантиметров (для первичной обмотки, можно взять пол-литровую пластиковую бутылку);
  • — дощечки для изготовления подставки.

Этапы сборки качера Бровина

  1. 1. Для первичной катушки берем медный провод квадратного сечения и мотаем его на любой трубке диаметром 4-7 сантиметров – делаем 4 витка. Вынимаем трубку, растягиваем провод в длину так, чтобы высота обмотки получилась 10-15 сантиметров (примерно треть от высоты вторичной катушки). Готово.
  2. 2. Для вторичной катушки мотаем тонкий обмоточный провод вокруг пластиковой трубы, делаем 800-1000 витков. Через каждые несколько сантиметров рекомендуется наносить на свежие витки клей, иначе обмотка может сбиться и перепутаться. Устанавливаем первичную обмотку вокруг нижней части вторичной катушки (см. фото ниже).
  3. 3. Остальные элементы собираем по схеме. Трубу необходимо закрепить в вертикальном положении, для этого ее торец можно приклеить к основе (дощечке или даже ненужному DVD-диску). Если схема не заработала, попробуйте поменять местами выводы первичной катушки. Должно помочь.
  4. 4. Настройка собранного качера осуществляется регулировкой подстроечного резистора R1. Также не забудьте на транзисторы установить радиаторы – греются они довольно сильно.

Собрали? С замиранием сердца подносим к катушке энергосберегающую лампу.

Но указанный вариант – не единственно возможный. Энтузиастами и самим Бровиным было разработано множество схем, с различными транзисторами, двумя или тремя катушками и т.п.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!