Мода и стиль. Красота и здоровье. Дом. Он и ты

Лечение нарушений митохондриального окисления. «Вторичные» митохондриальные дисфункции

Выделяют большое число хронических заболеваний, одним из патогенетических звеньев которых является вторичная митохондриальная недостаточность. Их перечень далеко не полон и расширяется по сей день.

Все эти нарушения полиморфны, могут иметь различную степень выраженности и представлять интерес для медицинских специалистов самых различных областей - невропатологов, кардиологов, неонатологов, нефрологов, хирургов, урологов, оториноларингологов, пульмонологов и др.

По нашим данным, не менее трети всех детей-инвалидов в симптомокомплексе своих заболеваний имеют признаки полисистемного нарушения клеточной энергетики. Следует отметить, что за последние годы значительно увеличилось число детей с заболеваниями, сопровождающимися высокой вероятностью тканевой гипоксии.

Проведенные недавно в Московском НИИ педиатрии и детской хирургии исследования у детей, поступивших в генетическую клинику с недифференцированными нарушениями физического и нервно-психического развития, показали, что у половины из них отмечены нарушения клеточного энергообмена. Сотрудниками этого института впервые обнаружено наличие митохондриальных нарушений при таких патологиях у детей: болезни соединительной ткани (синдромы Марфана и Элерса-Данло), туберозный склероз, ряд неэндокринных синдромов, сопровождающихся задержкой роста (остеохондродисплазии, синдромы Аарскога, Сильвера-Рассела и др.), выявлено влияние митохондриальной недостаточности на течение ряда кардиологических, наследственных, хирургических и других заболеваний. Совместно с сотрудниками Смоленской медицинской академии описана декомпенсирующая митохондриальная недостаточность при сахарном диабете 1 типа у детей со сроком заболевания более 5 лет.

Особо следует отметить полисистемные митохондриальные дисфункции, вызванные экопатогенными факторами. Среди последних - как хорошо известные (например, угарный газ, цианиды, соли тяжелых металлов), так и описанные сравнительно недавно (в первую очередь побочные действия ряда лекарственных веществ - азидотимидина, вальпроатов, аминогликозидов и некоторых других). Кроме того, к этой же группе относятся митохондриальные дисфункции, вызванные рядом алиментарных нарушений (прежде всего дефицит витаминов группы В).

Наконец, отдельно нужно упомянуть о том, что, по мнению многих исследователей, увеличение числа митохондриальных дисфункций является если не основным, то одним из важнейших механизмов старения. На международном симпозиуме по митохондриальной патологии, состоявшемся в Венеции в 2001 г., было сообщено об открытии специфических мутаций митохондриальной ДНК, появляющихся при старении. Эти мутации не обнаруживаются у молодых пациентов, а у лиц пожилого возраста определяются в различных клетках организма с частотой свыше 50%.

Патогенез.

Снижение доставки кислорода к нервной клетке в условиях острой ишемии приводит к ряду регуляторных функционально-метаболических изменений в митохондриях, среди которых нарушения состояния митохондриальных ферментных комплексов (МФК) играют ведущую роль и которые приводят к подавлению аэробного синтеза энергии. Общая ответная реакция организма на острую кислородную недостаточность характеризуется активацией срочных регуляторных компенсаторных механизмов. В нейрональной клетке включаются каскадные механизмы внутриклеточной сигнальной трансдукции, ответственные за экспрессию генов и формирование адаптивных признаков. Такая активация проявляется уже через 2-5 минут кислородного голодания и протекает на фоне снижения дыхания, связанного с подавлением МФК-1. Подтверждением вовлечения в адаптивные процессы внутриклеточных сигнальных систем, необходимых для формирования геномзависимых адаптивных реакций, являются активация протеинкиназ -- конечных звеньев этих систем, открытие мито-КАТФ-канала, усиление связанного с ним АТФ-зависимого транспорта К+, повышенная генерация H2O2.

На этом этапе приспособительных реакций ключевая роль отводится семействам так называемых ранних генов, продукты которых регулируют экспрессию генов позднего действия. На сегодняшний день установлено, что в мозге к таким генам относятся NGFI-A, c-jun, junB, c-fos, играющие важную роль в процессах нейрональной пластичности, обучения, выживаемости/гибели нейронов. В том случае, когда прекондиционирование оказывало защитное действие и корригировало нарушения, вызванные тяжелым гипоксическим воздействием в чувствительных к гипоксии структурах мозга, наблюдалось повышение экспрессии мРНк всех этих генов, так же как и мРНК генов митохондриальных антиоксидантов.

Более длительное пребывание в условиях сниженного содержания кислорода сопровождается переходом на новый уровень регуляции кислородного гомеостаза, который характеризуется экономизацией энергетического обмена (изменением кинетических свойств ферментов окислительного метаболизма, которому сопутствует увеличение эффективности окислительного фосфорилирования, появлением новой популяции мелких митохондрий с набором ферментов, позволяющих им работать в этом новом режиме). Кроме того, в данных условиях адаптация к гипоксии на клеточном уровне тесно связана с транскрипционной экспрессией индуцируемых гипоксией генов позднего действия, которые участвуют в регуляции множественных клеточных и системных функций и необходимы для формирования адаптивных признаков. Известно, что при низких концентрациях кислорода этот процесс контролируется прежде всего специфическим транскрипционным фактором, индуцируемым при гипоксии во всех тканях (HIF-1). Этот фактор, открытый в начале 90-х годов, функционирует как главный регулятор кислородного гомеостаза и является механизмом, с помощью которого организм, отвечая на тканевую гипоксию, контролирует экспрессию белков, ответственных за механизм доставки кислорода в клетку, т.е. регулирует адаптивные ответы клетки на изменения оксигенации тканей.

В настоящее время для него идентифицировано более 60 прямых генов-мишеней. Все они способствуют улучшению доставки кислорода (эритропоэза, ангиогенеза), метаболической адаптации (транспорту глюкозы, усилению гликолитической продукции АТФ, ионному транспорту) и клеточной пролиферации. Продукты регулируемых HIF-1 действуют на разных функциональных уровнях. Конечным результатом такой активации является увеличение поступления O2 в клетку.

Идентификация и клонирование HIF-1 позволили установить, что он представляет собой гетеродимерный redox-чувствительный белок, состоящий из двух субъединиц: индуцибельно экспрессируемой кислородочувствительной субъединицы HIF-1б и конститутивно экспрессируемой субъединицы HIF-1в (транслокатор арилгидрокарбонового ядерного рецептора -- aryl hydrocarbon receptor nuclear translocator -- ARNT). Гетеродимеризуясь с арилкарбоновым рецептором (AHR), он образует функциональный диоксиновый рецептор. Известны и другие белки семейства HIF-1б: HIF-2б, HIF-3б. Все они принадлежат к семейству основных белков, содержащих в аминокислотной концевой части каждой субъединицы базисный домен «спираль -- петля -- спираль» (basic helix-loop-helix -- bHLH), характерный для самых различных транскрипционных факторов и необходимый для димеризации и связывания ДНК.

HIF-1б состоит из 826 аминокислотных остатков (120 kD) и содержит два транскрипционных домена в C-терминальном конце. В нормоксических условиях его синтез происходит с невысокой скоростью и его содержание минимально, так как он подвергается быстрой убиквитинации и деградации протеосомами. Этот процесс зависит от взаимодействия имеющегося в первичной структуре HIF-1б и специфичного для него кислородозависимого домена деградации (ODDD -- oxygen dependant domen degradation) с широко распространенным в тканях белком von Hippel Lindau (VHL) -- супрессором опухолевого роста, который действует как протеинлигаза.

Молекулярной основой для такой регуляции является O2-зависимое гидроксилирование двух его пролиновых остатков P402 и P564, входящих в структуру HIF-1б, одним из трех ферментов, известных под общим названием «белки пролилгидроксилазного домена (PHD)», или «HIF-1б-пролилигидроксилазы», что необходимо для связывания HIF-1б с белком VHL. Обязательными компонентами процесса являются также б-кетоглутарат, витамин C и железо. Наряду с этим происходит гидроксилирование остатка аспарагина в C-терминальном трансактивационном домене (C-TAD), что приводит к подавлению транскрипционной активности HIF-1б. После гидроксилирования остатков пролина в ODDD и остатка аспарагина происходит связывание HIF-1б с белком VHL, которое делает доступной эту субъединицу протеосомной деградации.

В условиях резкого дефицита кислорода кислородозависимый процесс гидроксилирования пролиловых остатков, характерный для нормоксии, подавляется. В силу этого VHL не может связаться с HIF-1б, его деградация протеосомами ограничивается, что делает возможным его аккумуляцию. В отличие от этого p300 и CBP могут связываться с HIF-1б, так как этот процесс не зависит от аспарагинилгидроксилирования. Это обеспечивает активацию HIF-1б, его транслокацию в ядро, димеризацию с HIF-1в, приводящую к конформационным изменениям, образованию транскрипционного активного комплекса (HRE), запускающего активацию широкого спектра HIF-1-зависимых генов-мишеней и синтез защитных адаптивных белков в ответ на гипоксию.

Вышеприведенные механизмы внутриклеточной сигнальной трансдукции происходят в клетке при ее адаптации к гипоксии. В случае, когда наступает дезадаптация, в клетке накапливается значительная концентрация АФК, активизируются процессы ее апоптической гибели.

В числе первых можно назвать, в частности, переход фосфатидилсерина в наружный мембранный слой и фрагментацию ДНК под действием АФК и NO. В этой мембране фосфатидилсерин обычно присутствует только во внутреннем липидном слое. Такое асимметричное распределение данного фосфолипида обусловлено действием особой транспортной ATPазы, переносящей фосфатидилсерин из внешнего липидного слоя плазматической мембраны во внутренний. Эта ATPаза либо инактивируется окисленной формой фосфатидилсерина, либо просто «не узнает» окисленный фосфолипид. Вот почему окисление фосфатидилсерина посредством АФК ведет к его появлению во внешнем слое плазматической мембраны. По-видимому, существует специальный рецептор, обнаруживающий фосфатидилсерин в наружном липидном слое. Предполагается, что этот рецептор, связав фосфатидилсерин, шлет внутрь клетки сигнал апоптоза.

Фосфатидилсерин играет ключевую роль в так называемом принудительном апоптозе, вызываемом определенным типом лейкоцитов. Клетка с фосфатидилсерином во внешнем слое клеточной мембраны «узнается» этими лейкоцитами, которые инициируют ее апоптоз. Один из апоптогенных механизмов, используемых лейкоцитами, состоит в том, что лейкоциты начинают выделять в межклеточное пространство вблизи клетки-мишени белки перфорин и гранзимы. Перфорин проделывает отверстия во внешней мембране клетки-мишени. Гранзимы входят в клетку и запускают в ней апоптоз.

Иной способ, используемый лейкоцитом для принуждения клетки-мишени к вхождению в апоптоз, состоит в ее бомбардировке супероксидом, образующимся снаружи лейкоцита посредством специальной трансмембранной дыхательной цепи плазматической мембраны. Эта цепь окисляет внутриклеточный NADPH, с которого электроны переносятся на флавин и далее на особый цитохром b, способный окисляться кислородом с выделением супероксида снаружи лейкоцита. Супероксид и другие образующиеся из него АФК окисляют фосфатидилсерин плазматической мембраны клетки-мишени, тем самым усиливая апоптозный сигнал, посылаемый клетке этим фосфолипидом.

Кроме того, лейкоциты включают фактор некроза опухоли. TNF связывается с его рецептором на внешней стороне плазматической мембраны клетки-мишени, что активирует сразу несколько параллельных путей запуска апоптоза. В одном из них происходит образование активной каспазы-8 из прокаспазы-8. Каспаза-8 -- протеаза, расщепляющая цитозольный белок Bid с образованием его активной формы tBid (truncated Bid). tBid меняет конформацию другого белка, Bax, вызывая образование проницаемого для белков канала во внешней мембране митохондрий, что приводит к их выходу из межмембранного пространства в цитозоль.

Разнообразие путей АФК-зависимого апоптоза иллюстрирует рис. 1. Истинная картина, по всей вероятности, еще более сложна, так как помимо TNF есть и другие внеклеточные индукторы апоптоза (цитокины), действующие каждый через свой собственный рецептор. Кроме того, существуют антиапоптозные системы, противостоящие проапоптозным системам. Среди них белки типа Bcl-2, тормозящие проапоптическую активность Bax; уже упоминавшиеся ингибиторы каспаз (IAP); белок NFkB (nuclear factor kB), индуцируемый посредством TNF. NFkB включает группу генов, среди которых есть те, которые кодируют супероксиддисмутазу и другие антиоксидантные и антиапоптозные белки.

Все эти сложности отражают то очевидное обстоятельство, что для клетки «решение покончить с собой» есть крайняя мера, когда исчерпаны все другие возможности предотвращения ее ошибочных действий.

Приняв во внимание изложенное выше, можно представить себе следующий сценарий событий, призванных защитить организм от АФК, генерируемых митохондриями. Образовавшись в митохондриях, АФК вызывают открытие поры и, как следствие, -- выход цитохрома С в цитозоль, что немедленно включает дополнительные антиоксидантные механизмы, а затем митоптоз. Если в митоптоз уходит лишь небольшая часть внутриклеточной популяции митохондрий, концентрации цитохрома С и других митохондриальных проапоптических белков в цитозоле не достигают значений, необходимых, чтобы активировать апоптоз. Если же все больше и больше митохондрий становятся суперпродуцентами АФК и «открывают кингстоны», эти концентрации возрастают и начинается апоптоз клетки, содержащей много дефектных митохондрий. В результате происходит очистка ткани от клеток, митохондрии которых образуют слишком много АФК.

Таким образом, можно говорить о митохондриальной дисфункции как о новом патобиохимическом механизме нейродегенеративных расстройств широкого спектра. В настоящий момент выделяют два вида митохондриальной дисфункции -- первичную, как следствие врожденного генетического дефекта, и вторичную, возникающую под действием различных факторов: гипоксии, ишемии, оксидативного и нитрозирующего стресса, экспрессии провоспалительных цитокинов. В современной медицине все более значимое место занимает учение о полисистемных нарушениях клеточного энергообмена, так называемой митохондриальной патологии, или митохондриальной дисфункции.

Митохондриальные дисфункции -- разнородная группа патологии, вызванная генетическими, биохимическими и структурно-функциональными дефектами митохондрий с нарушением клеточно-тканевого дыхания. Классификация митохондриальной дисфункции имеет свою историю. Одной из первых была схема, основанная на биохимических дефектах метаболизма. Недостаточно глубокой оказалась и систематизация по клиническим синдромам, среди них ранее выделяли:

  • 1) синдромы установленной митохондриальной природы;
  • 2) синдромы предположительно митохондриальной природы;
  • 3) синдромы -- следствия митохондриальной патологии.

Первое упоминание о болезни, связанной с дефектом митохондрий, относится к 1962 г.: R. Luft и соавт. описали случай заболевания, при котором имело место нарушение сопряжения дыхания и фосфорилирования в митохондриях скелетных мышц у пациента с нетиреоидным гиперметаболизмом. В последующие годы были описаны клинические, биохимические и морфологические аспекты митохондриальных энцефаломиопатий. В развитии этого направления большую роль сыграло использование модифицированной окраски по Гомори, с помощью которой удавлось выявлять в скелетных мышцах волокна с измененными митохондриями -- так называемые ragged-red волокна (RRF).

Позднее, с открытием митохондриального генома и мутаций мДНК или яДНК, удалось применить генетический принцип классификации для первичной, врожденной митохондриальной дисфункции -- сначала в упрощенном виде, затем в усложненном. Ключевая область митохондриальной патологии -- наследственные синдромы, в основе которых лежат мутации генов, ответственных за митохондриальные белки (синдромы Кернса -- Сейра, MELAS, MERRF, Пирсона, Барта и др.). Митохондриальные дисфункции проявляются широким рядом клинических симптомов. Эти мутации способны вовлекать тРНК, рРНК или структурные гены и могут выражаться биохимически как дефекты всей электронно-транспортной цепи или как дефекты отдельных энзимов.

На протяжении 90-х годов XX столетия идентификация множества митохондриальных дефектов, обусловливающих клинически совершенно разные расстройства, ставила в тупик клиницистов в отношении диагностики гетерогенных и сложных синдромов, характеризующихся следующими признаками:

  • -- скелетные мышцы: низкая толерантность к физической нагрузке, гипотония, проксимальная миопатия, включающая фациальные и фарингеальные мышцы, офтальмопарез, птоз;
  • -- сердце: нарушение сердечного ритма, гипертрофическая миокардиопатия;
  • -- ЦНС: атрофия зрительного нерва, пигментная ретинопатия, мио­клонус, деменция, инсультоподобные эпизоды, расстройства психики;
  • -- периферическая нервная система: аксональная невропатия, нарушение двигательной активности гастроинтестинального тракта;
  • -- эндокринная система: диабет, гипопаратиреоидизм, нарушение экзокринной функции поджелудочной железы, низкий рост.

Поскольку первичные митохондриальные дисфункции проявляются у человека целым рядом различных симптомов, клиницисты попробовали объединить некоторые группы наиболее часто встречающихся комбинаций симптомов в синдромы:

  • · MELAS -- Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-like episodes (митохондриальная миопатия, энцефалопатия, лактат-ацидоз, инсультоподобные эпизоды).
  • · CPEO/PEO -- External Ophtalmoplegia, Ophtalmoplegia plus syndrome (офтальмоплегия, связанная с поражением глазодвигательных мышц, офтальмоплегия плюс синдром).
  • · KSS -- Kearns -- Sayre Syndrome -- retinopathy, proximal muscle weakness, cardiac arrhythmia and ataxia (ретинопатия, слабость проксимальных мышц, аритмия, атаксия).
  • · MERRF -- Myoclonic Epilepsy associated with Ragged Red Fibres (миоклоническая эпилепсия с обнаружением RRF).
  • · LHON -- Leber Hereditary Optic Neuropathy (врожденная невропатия глазного нерва).
  • · Leig syndrome -- infantile subacute necrotizing encephalopathy (инфантильная подострая некротизирующая энцефалопатия).
  • · NAPR -- Neuropathy, Ataxia and Pigmentary Retinopathy (невропатия, атаксия и пигментная ретинопатия).

Митохондриальные болезни (цитопатии) - гетерогенная группа системных расстройств, обусловленных мутациями митохондриального или ядерного генома, которые поражают преимущественно мышечную, нервную и нервно-мышечную системы .

ВВЕДЕНИЕ

В настоящее время митохондриология выделилась в самостоятельное научное направление. Более того, открытие в последние годы ведущей роли митохондрий в чувствительности к лекарствам, их ключевой ролью в старении, апоптозе и нейродегенеративных расстройствах привело к созданию митохондриальной медицины. Важным ее разделом являются болезни, связанные с нарушением функции митохондрий, - митохондриальные цитопатии.

Большинство исследователей признают, что митохондрии в клетках животных являются отдаленными потомками архибактерий , которые на заре жизни внедрились в первобытные эукариотические клетки и постепенно превратились в эндосимбионтов. Митохондрии, являющиеся потомками свободно живущих эубактерий, сохранили только минимальные остатки своего генома в эволюционном процессе эндосимбиоза. Бульшая часть генома была или передана ядру эукариотического хозяина, или утрачена, так как животные клетки предоставляют митохондриям «и стол, и дом», используя в свою очередь энергию, запасаемую в продукте жизнедеятельности митохондрий в виде АТФ. Фрагменты из кодирующей и некодирующей областей митДНК находятся как ископаемые остатки в ядерном геноме различных эукариотов.

Концепция симбиоза принимается как наиболее вероятная гипотеза, в пользу которой, помимо второстепенных, свидетельствуют два фундаментальных факта :
1 - митохондрии единственные органеллы, имеющие собственный геном
2 - генетический код митохондриальной (митДНК) и ядерной (яДНК) ДНК различен (данное обстоятельство является веским аргументом против существовавшего ранее предположения о происхождении митохондрий в результате компартментализации части ядерного генома)

В процессе симбиоза митохондрии утратили значительную часть самостоятельности и передали бульшую часть своего генома ядрам клеток. В результате их жизнь и функционирование только в малой степени обеспечиваются собственной ДНК. Бульшая часть митохондриальных белков кодируется в ядрах клеток и доставляется в митохондрии из цитоплазмы. В постмитотических клетках, таких как мышечные волокна, нейроны и кардиомиоциты, митохондрии имеют ограниченный срок жизни (несколько недель). В нормальных условиях их новообразование требует координации между митохондриальной ДНК, кодирующей 13 из 80 белковых субъединиц респираторной цепи, 2 белковых субъединицы мРНК и 22 митохондриальных тРНК (всего 37 генов), и ядерным геномом, кодирующим более 99% митохондриальных белков.

Главные функции митохондрий :
продукция энергии для клеток в виде АТФ в результате окислительного фосфорилирования различных субстратов (дыхательная цепь состоит из пяти энзимных комплексов)
b-окисление жирных кислот
цикл трикарбоновых кислот
выполняют роль во внутриклеточной сигнализации, апоптозе, промежуточном метаболизме, а также в метаболизме аминокислот, липидов, холестерина, стероидов и нуклеотидов

МИТОХОНДРИАЛЬНАЯ ПАТОЛОГИЯ

Наследование мутаций в митохондриальном геноме носит особый характер. Если гены, заключенные в ядерной ДНК, дети получают поровну от обоих родителей, то митохондриальные гены передаются потомкам только от матери . Это связано с тем, что всю цитоплазму с содержащимися в ней митохондриями потомки получают вместе с яйцеклеткой, в то время как в сперматозоидах цитоплазма практически отсутствует. По этой причине женщина с митохондриальным заболеванием передаёт его всем своим детям, а больной мужчина - нет.

В нормальных условиях все митохондрии в клетке имеют одинаковую копию ДНК - гомоплазмия . Однако в митохондриальном геноме могут происходить мутации и вследствие параллельного существования мутированной и немутированной митДНК возникает гетероплазмия .

К настоящему времени известно более 200 заболеваний, вызванных мутацией митДНК.

Заболевания, вызванные мутацией митДНК подразделяются на две группы :
1 - точечные мутации белков, тРНК, рРНК в кодирующих областях, которые часто наследуются по линии матери
2 - структурные перестановки - дупликации и делеции, которые обычно являются спорадическими

Ядерные мутации также могут приводить к нарушению функции митохондрий (в первую очередь нарушению окислительного фосфорилирования) вследствие того, что митДНК кодирует только 13 полипептидных субъединиц дыхательной цепи из 80 необходимых. Помимо этого, энзимы и другие факторы, необходимые для транскрипции, репликации и трансляции, также поступают в митохондрии из цитоплазмы клетки, а не синтезируются непосредственно в митохондрии.

Поскольку знания о ядерном геноме на протяжении последних лет значительно расширились, идентифицируются все больше дефектов митохондрий, кодируемых ядром; различают :
мутации структурных белков и тРНКаз, нарушающие функционирование респираторной цепи
мутации, которые нарушают интергеномное взаимодействие между ядром и митохондриями и тем самым вызывают вторичные изменения митДНК

К настоящему времени описано много вариантов нарушения процесса окислительного фосфорилирования в митохондриях человека. Дефект может быть связан с одним или несколькими энзимными комплексами. В одной клетке, как было сказано ранее, могут сосущестовать митохондрии нормальные и с нарушенной функцией (гетероплазмия). За счет первых клетка может функционировать какое-то время. Если же продукция энергии в ней падает ниже определенного порога, происходит компенсаторная пролиферация всех митохондрий, включая дефектные. Естественно, при этом в худшем положении оказываются клетки, которые потребляют много энергии: мышечные волокна, кардиомиоциты, нейроны.

Из-за нарушения функционирования митохондрии постоянно продуцируют свободные радикалы на уровне 1-2% поглощенного кислорода. Количество продукции радикалов зависит от мембранного потенциала митохондрий, на изменения которого влияет состояние АТФ-зависимых калиевых каналов митохондрий. Открытие этих каналов влечет за собой возрастание образования свободных радикалов. Свободные радикалы играют огромную роль в старении митохондрий и, следовательно, в старении эукариотических клеток. Агрессивная среда вокруг митохондрий при значительном увеличении их количества и нарушении функции может быть одним из факторов развития деструктивных изменений в клетках. Изменения мембранного потенциала митохондрий, а также образование свободных радикалов в свою очередь оказывают повреждающее влияние на другие белки митохондриальных мембран. Митохондриальная ДНК содержит очень небольшую некодирующую область и хорошо доступна для радикалов, генерируемых респираторной цепочкой в ходе аэробного образования АТФ, а способность митохондрий к восстановлению мала. Поэтому уровень повреждения митДНК, возрастающий с возрастом, влияет на степень гетероплазмии. Принято считать, что 10% митохондрий с измененной ДНК не оказывает влияния на фенотип. Вместе с тем высокая скорость их обновления и короткая жизнь создают своеобразный способ восстановления путем замещения для коррекции повреждения свободными радикалами.

Нарушение функции митохондрий сопровождается выраженными изменениями их структуры - эти изменения наиболее демонстративны в скелетных мышцах. В нормальных условиях митохондрии в скелетных мышцах, располагающиеся между миофибриллами, имеют удлиненную форму, электронно-плотный матрикс и относительно редкие пластинчатые кристы. Они могут также образовывать небольшие субсарколеммальные скопления. При электронно-микроскопическом исследовании мышц больных с митохондриальной цитопатией обнаруживают изменение величины, формы и внутренней структуры в их митохондриальном аппарате. Иногда изменения структуры заходят настолько далеко, что такие образования можно с трудом идентифицировать как митохондрии. Наиболее характерные изменения митохондрий обусловлены удлинением крист . Иногда это приводит к удлинению самих митохондрий (лентовидные), в других случаях - к спиральному закручиванию крист. Изменения претерпевают и сами кристы, становясь из пластинчатых трубчатыми. Все это можно рассматривать как попытку скомпенсировать недостаточную эффективность функции дыхательной цепочки в митохондриях. Другой распространенной особенностью дефектных структур является наличие в них паракристаллических включений. Наконец, можно проследить эволюцию митохондрий от более простых к более сложным.

КЛИНИЧЕСКИЕ ПРОЯВЛЕНИЯ МИТОХОНДРИАЛЬНЫХ БОЛЕЗНЕЙ (цитопатий)

В случаях, когда человек с мутацией в митохондриальном гене несет смесь нормальной и мутантной ДНК - мутации поначалу могут вообще не иметь внешних проявлений. Нормальные митохондрии до поры до времени обеспечивают клетки энергией, компенсируя недостаточность функции митохондрий с дефектами. На практике это проявляется более или менее длительным бессимптомным периодом при многих митохондриальных заболеваниях. Однако рано или поздно наступает момент, когда дефектные формы накапливаются в количестве, достаточном для проявления патологических признаков. Возраст манифестации заболевания варьирует у разных больных. Раннее начало заболевания приводит к более тяжелому течению и неутешительному прогнозу.

Митохондриальные мутации проявляются широким рядом клинических симптомов. Эти мутации способны вовлекать тРНК, рРНК или структурные гены и могут выражаться биохимически как дефекты всей электронно-транспортной цепи или как дефекты отдельных энзимов. Митохондриальные цитопатии поражают множественные органные системы, но, как указывалось, предпочтительно поражаются органы с высокой метаболической активностью - мозг и скелетные мышцы. Таким образом, скелетные мышцы являются тканью выбора для выявления митохондриальных болезней.

Характерные признаки митохондриальных цитопатий :
скелетные мышцы : низкая толерантность к физической нагрузке, гипотония, проксимальная миопатия, включающая фациальные и фарингеальные мышцы, офтальмопарез, птоз
сердце : нарушения сердечного ритма, гипертрофическая миокардиопатия
центральная нервная система : атрофия зрительного нерва, пигментная ретинопатия, миоклонус, деменция, инсультоподобные эпизоды, расстройства психики
периферическая нервная система : аксональная нейропатия, нарушения двигательной функции гастроинтестинального тракта
эндокринная система : диабет, гипопаратиреоидизм, нарушение экзокринной функции панкреас, низкий рост

Клинический полиморфизм митохондриальных цитопатий (некоторые группы наиболее часто встречающихся комбинаций симптомов) клиницисты объединили в синдромы - все они являются сокращениями английских названий симптомов (следует иметь в виду, что симптомы при разных синдромах могут перекрещиваться) :
MELAS - Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-like episodes - митохондриальная миопатия, энцефалопатия, лактатный ацидоз и инсультоподобные эпизоды
CPEO/PEO - External Ophthalmoplegia, Ophthalmoplegia plus syndrome - офтальмоплегия, связанная с поражением глазодвигательных мышц, офтальмоплегия плюс синдром
KSS - Kearns-Sayre Syndrome - retinopathy, proximal muscle weakness, cardiac arrythmia and ataxia - ретинопатия, слабость проксимальных мышц, аритмия и атаксия
MERRF - Myoclonic Epilepsy associated with Ragged Red Fibres - миоклоническая эпилепсия с обнаружением RRF (мышечные волокна с измененными митохондриями - так называемые ragged-red волокна - RRF)
LHON - Leber Hereditary Optic Neuropathy - врожденная нейропатия глазного нерва
Leigh syndrome - infantile subacute necrotizing encephalopathy - инфантильная подострая некротизирующая энцефалопатия
NAPR - Neuropathy, Ataxia and Pigmentary Retinopathy - нейропатия, атаксия и пигментная ретинопатия

Наиболее обычными при митохондриальных цитопатиях являются неврологические симптомы , поскольку, как указывалось выше, ткани, в наибольшей степени зависящие от окислительного фосфорилирования, составляют основу патогенеза этих страданий.

Митохондриальные цитопатии могут быть спорадическими или наследственными , при этом они наследуются, как и гемофилия, по линии матери, только в отличие от гемофилии поражают лиц обоего пола. Применение некоторых фармакологических средств, например зидовудина, также может индуцировать проксимальную миопатию и появление RRF. С возрастом в митДНК накапливаются мутации, в результате чего у пожилых людей также могут встречаться RRF.

!!! митДНК накапливает мутации более чем в десять раз быстрее по сравнению с ядерным геномом - это связано с тем, что митДНК лишена защитных гистонов и, как уже упоминалось, ее окружение чрезвычайно богато реактивными видами кислорода, являющимися побочным продуктом метаболических процессов, протекающих в митохондриях; кроме того, восстановительные механизмы митДНК малоэффективны по сравнению с ядерной

Окончательный диагноз митохондриальных цитоатий ставится исходя из результатов биохимических и молекулярных исследований, что доступно в специально оборудованных центрах.

Существует ряд рутинных клинических методов исследования, которые можно использовать при подозрении на митохондриальную цитопатию :
лактатный ацидоз является практически постоянным спутником митохондриальных болезней (только этот признак является недостаточным для постановки диагноза, так как он может выявляться и при других патологических состояниях; в этом отношении может быть полезным измерение уровня лактата в венозной крови после умеренной физической нагрузки, например на велоэргометре)
ЭМГ-исследование - само по себе данное исследование также не могут быть маркером митохондриальной цитопатии; вместе с тем нормальная или близкая к нормальной ЭМГ у пациентов с выраженной мышечной слабостью может быть подозрительной в отношении митохондриальной патологии.
ЭЭГ – данные ЭЭГ не является достаточно специфическими
биопсия скелетных мышц - является наиболее информативным методом при постановке диагноза митохондриальной цитопатии - помимо обнаружения RRF при трехцветной окраске по Гомори, полезными являются другие гистохимические и иммунологические исследования: окраска на цитохромс-оксидазу и сукцинатдегидрогеназу, иммунногистохимические исследования с применением антител к отдельным субъединицам дыхательного комплекса; мышечная ткань удобна для биохимического исследования респираторной цепочки, а также как материал для генетического исследования
электронно-микроскопическое исследование скелетных мышц - дает прекрасные результаты, поэтому данный метод надо использовать, если имеется такая возможность

Что касается терапии митохондриальных цитопатий , то речь может идти пока только о симптоматической.

Лечение митохондриальных болезней проводится обычно по двум основным направлениям :
повышение эффективности энергетического обмена в тканях (тиамин, рибофлавин, никотинамид, коэнзим Q10, витамин С, цитохром С и др.)
предупреждение повреждения митохондриальных мембран свободными радикалами с помощью антиоксидантов (витамин Е, a-липоевая кислота) и мембранопротекторов

Лечение включает также альтернативные источники энергии (креатин моногидрат), стратегию снижения уровня лактата (дихлорацетат) и физические упражнения.

Разработка методов генной терапии и вообще патогенетических методов лечения еще находится в стадии экспериментов. Одним из наиболее перспективных направлений генной терапии является попытка изменить уровень гетероплазмии путем или селективной ингибиции репликации митохондрий, или разрушения мутантной ДНК. Такой подход базируется на факте, что требуется большое число копий мутантной митДНК, чтобы эффект мутации стал фенотипически явным. Аргументируется, что при эффективном уменьшении популяции мутантной ДНК увеличивается количество нормальной и это приводит в результате к нормализации фенотипа.

Возникновение этих заболеваний связано с изменением ДНК митохондрий. Геном митохондриальной ДНК полностью расшифрован. В нем есть гены рибосомальных РНК, 22 тр-РНК и 13 полипептидов, участвующих в реакциях окислительного фосфорилирования. Большинство митохондриальных белков кодируются генами ядерной ДНК, транслируются в цитоплазме, а затем поступают в митохондрии. ДНК митохондрий наследуется по материнской линии. В цитоплазме яйцеклетки содержатся тысячи митохондрий, в то время как митохондрии сперматозоида не оказываются в зиготе. Поэтому мужчины наследуют мт-ДНК от своих матерей, но не передают е своим потомкам.

В каждой митохондрии содержится 10 и более молекул ДНК. Обычно все копии мт-ДНК идентичны. Иногда, однако, в мт-ДНК возникают мутации, которые могут передаваться как дочерним митохондриям, так и дочерним клеткам.

Клинически мутации могут проявить себя в виде различных симптомов в любом органе или ткани и в любом возрасте. Наиболее энергозависимыми, а поэтому уязвимыми являются мозг, сердце, скелетные мышцы, эндокринная системы, печень. Поражения нервной системы обычно сопровождаются судорогами, нарушение координации (атаксия), снижением интеллекта, нейросенсорной глухотой.

Примеры наследственных болезней: атрофия дисков зрительных нервов Лебера (острая потеря центрального зрения, может проявиться в любом возрасте), митохондриальная энцефаломиопатия, синдром миоклонической эпилепсии и рваных мышечных волокон.

Мультифакторные заболевания

Возникают у лиц с соответствующим сочетанием предрасполагающих аллелей, имеет место полиморфизм клинических признаков, заболевания проявляются в любом возрасте, в патологический процесс может быть вовлечена любая система или орган. Примеры: гипертоническая болезнь, атеросклероз, язвенная болезнь, шизофрения, эпилепсия, глаукома, псориаз, бронхиальная астма и др.

Особенности :

    Высокая частота встречаемости в популяции

    Существование различных клинических форм

    Зависимость степени риска для родственников больного:

Чем реже болезнь в популяции, тем выше риск для родственников пробанда

Чем сильнее выражена болезнь у пробанда, тем выше риск заболевания у его родственника

Риск для родственников пробанда будет выше, если имеется другой больной кровный родственник.

Медико-генетическое консультирование

Это один из видов специализированной медицинской помощи населению. В консультации работают врачи-генетики, а также другие специалисты (акушеры, педиатры, эндокринологи, невропатологи). Основные задачи консультации:

Оказание помощи врачам в постановке диагноза наследственного заболевания

Определение вероятности рождения ребенка с наследственной патологией

Объяснения родителям смысла генетического риска

Этапы консультирования:

1.Обследование больного и постановка диагноза наследственного заболевания . Для этого используются различные методы: цитогенетический, биохимический, ДНК-диагностики. Показаниями для консультирования являются:

Установленная или подозреваемая наследственная болезнь в семье

Рождение ребенка с пороками развития

Повторные спонтанные аборты, мертворождения, бесплодие

Отставание детей в психическом и физическом развитии

Нарушение полового развития

Кровнородственные браки

Возможное воздействие тератогенов в первые 3 месяца беременности

2. Определение риска рождения больного ребенка . При определении риска возможны следующие ситуации:

а) при моногенно наследуемых заболеваниях расчет риска основывается на законах Г.Менделя. При этом учитываются генотип родителей и особенности проявление гена (пенентрантность и экспрессивность).

б) при полигенно наследуемых заболеваниях (болезни с наследственной предрасположенностью) для расчета риска используют специальные таблицы и при этом учитываются следующие особенности:

Чем реже встречается болезнь в популяции, тем выше риск для родственников пробанда

Чем сильнее выражена болезнь у пробанда, тем выше риск заболевания у его родственников

Риск для родственников пробанда будет выше, если имеется другой больной кровный родственник

в) спорадические случаи заболевания: у фенотипически здоровых родителей рождается больной ребенок, при этом отсутствуют данные в сходной патологии у родственников. Причины:

Генеративные мутации у кого-то из родителей или соматические мутации на ранних стадиях эмбрионального развития

Переход рецессивного гена в гомозиготное состояние

Сокрытие одним из родителей семейной патологии.

3. Заключение консультации и советы родителям. Генетический риск до 5% рассматривается как низкий и не является противопоказанием для деторождения. Риск от 6 до 20 % - определяется как средний и расценивается как противопоказание к зачатию или как показание к прерыванию беременности. Независимо от степени риска целесообразно проведение пренатальной диагностики.

Пренатальная (дородовая) диагностика.

Многие болезни можно выявит еще до рождения ребенка. При обнаружении тяжелых заболеваний у плода, врач предлагает семье искусственное прерывание беременности. Окончательное решение вопроса об этом должна принять семья. К методам дородовой диагностики относятся:

1. Биопсия ворсин хориона. Производится на 7-9 неделе беременности. Служит для выявления хромосомных дефектов, активности ферментов с целью диагностики наследственных болезней обмена и ДНК- диагностики.

2. Амниоцентез (взятие околоплодной жидкости с содержащимися в ней клетками). Производится начиная с 12-14 недель беременности.

3. Кордоцентез (взятие крови из пупочных сосудов) производится на 20-25 неделе беременности и используется для тех же целей.

4. Анализ крови матери. Выявление α-фетопротеина (белок, который вырабатывается печенью плода и проникает через плацентарный барьер в кровь матери). Увеличение его в несколько раз на 16 неделе беременности может указывать на дефекты нервной трубки. Снижение его концентрации по отношении к норме может указывать на синдром Дауна.

5. Ультразвуковое исследование плода производится на всех сроках беременности. УЗИ исследование – главный метод визуального определения пороков развития плода и состояния плаценты. УЗИ исследование рекомендуется проводить всем женщинам не менее 2 раз в течение беременности.

Митохондриальные заболевания (МЗ) — группа наследственных заболеваний, связанных с дефектами в функционировании митохондрий, приводящими к нарушениям энергетических функций в клетках.

Историческая справка:

Понятие «митохондриальные болезни» сформировалось в медицине в конце ХХ века. В первую очередь были изучены болезни, связанные с мутациями митохондриальной ДНК, открытой в начале 60-ых годов. Полная первичная структура митохондриальной ДНК человека была опубликована в 1981 го¬ду и уже в конце 80-ых годов была доказана ведущая роль ее мутаций в развитии ряда наследственных заболеваний. К последним относятся: наследственная атрофия зрительных нервов Лебера, синдром NARP (нейропатия, атаксия, пигментный ретинит), синдром MERRF (миоклонусэпилепсия с "рваными" красными волокнами в скелетных мышцах), синдром MELAS (митохондриальная энцефаломиопатия, лактат-ацидоз, инсультоподобные эпизоды), синдром Кернса-Сейра (пигментный ретинит, наружная офтальмоплегия, блокада сердца, птоз, мозжечковый синдром), синдром Пирсона (поражение костного мозга, панкреатическая и печеночная дисфункции) и многие другие.

В меньшей степени изучены наследственные митохондриальные дефекты, связанные с повреждением ядерного генома.

Патогенез.

Митохондрии отвечают за выработку большей части энергии, необходимой для функционирования клеток. Фактически они являются настолько важным источником энергии, что в каждой клетке их сотни. При МЗ могут «выключиться» как часть митохондрий, так и все они, что приводит к прекращению выработки необходимой энергии

Поскольку наиболее энергоемкими являются нервные и мышечные клетки, при МЗ наиболее распространены мышечные и неврологические проблемы, такие, как мышечная слабость, непереносимость физических нагрузок, потеря слуха, нарушения баланса и координации, эпиприступы.

Митохондриальные зааболевания, вызывающие выраженные мышечные проблемы, именуют митохондриальными миопатиями (myo - означает «мышца», а pathos - «болезнь»), а те, которые вызывают как мышечные, так и неврологические проблемы - митохондриальными энцефаломиопатиями (encephalo - «мозг»)

Когда клетка заполнена дефектными митохондриями, она не только лишена АТФ, но в ней могут накапливаться неиспользуемые молекулы топлива и кислород, что приводит к катастрофическим последствиям. В этом случае избыточные молекулы топлива используются для синтеза АТФ неэффективно, в результате чего могут образовываться потенциально опасные продукты, такие, как молочная кислота (Это также происходит, когда клетки испытывают недостаток кислорода, например - мышечные клетки при усиленных физических нагрузках). Накопление молочной кислоты в крови - лактатацидоз - ассоциировано с мышечной усталостью, и может вызывать повреждение нервной и мышечной тканей.

При этом неиспользуемый в клетке кислород может трансформироваться в разрушительные соединения, именуемые реактивными формами кислорода, включая т. н. свободные радикалы (Они являются мишенью для т. н. антиоксидантных препаратов и витаминов).

Синтезированная в митохондриях АТФ - основной источник энергии для сокращения мышечных и возбуждения нервных клеток (т. к. клетки этих тканей наиболее метаболически активны, энергетически зависимы). Таким образом, нервные и мышечные клетки особенно чувствительны к дефектам митохондрий. Комбинированный эффект от потери энергии и накопления токсинов в этих клетках, надо полагать, и вызывает развитие симптомов митохондриальных миопатий и энцефаломиопатий

Клиника

В случаях, когда человек с мутацией в митохондриальном гене несет смесь нормальной и мутантной ДНК - мутации поначалу могут вообще не иметь внешних проявлений. Нормальные митохондрии до поры до времени обеспечивают клетки энергией, компенсируя недостаточность функции митохондрий с дефектами. На практике это проявляется более или менее длительным бессимптомным периодом при многих митохондриальных заболеваниях. Однако рано или поздно наступает момент, когда дефектные формы накапливаются в количестве, достаточном для проявления патологических признаков. Возраст манифестации заболевания варьирует у разных больных. Раннее начало заболевания приводит к более тяжелому течению и неутешительному прогнозу.

Характерные признаки митохондриальных цитопатий:

Скелетные мышцы: низкая толерантность к физической нагрузке, гипотония, проксимальная миопатия, включающая фациальные и фарингеальные мышцы, офтальмопарез, птоз

Сердце: нарушения сердечного ритма, гипертрофическая миокардиопатия

Центральная нервная система: атрофия зрительного нерва, пигментная ретинопатия, миоклонус, деменция, инсультоподобные эпизоды, расстройства психики

Периферическая нервная система: аксональная нейропатия, нарушения двигательной функции гастроинтестинального тракта

Эндокринная система: диабет, гипопаратиреоидизм, нарушение экзокринной функции панкреас, низкий рост

Таким образом, типичны для митохондриальных заболеваний вовлеченность разных органов и одновременное проявление внешне не связанных между собой аномалий. Примерами служат:

1. Мигрени с мышечной слабостью

2. Наружная офтальмоплегия с нарушением проводимости сердечной мышцы и мозжечковой атаксией

3. Тошнота, рвота с оптической атрофией и кардиомиопатией

4. Низкорослость с миопатией и инсультоподобным и эпизодами

5. Экзокринная дисфункция поджелудочной железы с сидеробластной анемией

6. Энцефало- миопатия с диабетом

7. Диабет с глухотой

8. Глухота с наружной офтальмоплегией, птозом и ретинопатией

9. Задержка развития или потеря навыков и офтальмоплегия, офтальмопарез

Характер и тяжесть клинических проявлений митохондриальных болезней определяется:

Тяжестью мутации мтДНК;

Процентным содержанием мутантной мтДНК в конкретных органах и тканях;

Энергетической потребностью и функциональным резервом органов и тканей, содержащих мтДНК (их “порогом чувствительности” к дефектам окислительного фосфори лирования).

Миопатия

Основные симптомы митохондриальной миопатии - истощение мышц и их слабость, и непереносимость физических нагрузок.

У некоторых индивидов слабость наиболее выражена в мышцах, контролирующих движения глаз и век. Два наиболее частых следствия такой слабости - это постепенный паралич движения глаз (прогрессирующая наружная офтальмоплегия, ПНО), и опущение верхних век (птоз). Зачастую люди автоматически компенсируют ПНО движениями головы для того, чтобы смотреть в различных направлениях, и могут даже не подозревать о каких либо проблемах. Птоз потенциально более неприятен, поскольку может ухудшить зрение, а также придает лицу апатичное выражение, но он может быть скорректирован хирургическим путем, либо использованием специальных очков с устройством для подъема века

Митохондриальные миопатии могут также вызывать слабость других мышц лица и шеи, что приводит к заплетающейся речи и трудностям с глотанием. В этих случаях могут помочь речевая терапия (занятия с логопедом) или включение в рацион питания таких продуктов, которые легче проглатываются.

Непереносимость физических нагрузок, также именуемая усталостью напряжения - это необычное чувство утомления в ответ на физическую активность. Степень этой непереносимости существенно варьируется у разных людей. Некоторые могут испытывать проблемы только при занятиях физкультурой, таких например, как оздоровительный бег, в то время как у других возникают сложности с выполнением повседневных дел, например с выходом к почтовому ящику или поднятием пакета молока.

Энцефаломиопатия

Митохондриальная энцефаломиопатия, как правило, включает некоторые из вышеупомянутых симптомов миопатии, дополненными одним или несколькими неврологическими симптомами. Также как и при миопатии, наблюдается значительная вариабельность симптомов обоего типа и тяжести течения у разных индивидов.

Среди наиболее частых симптомов митохондриальной энцефаломиопатии - нарушения слуха, мигренеподобные головные боли и эпиприступы. По крайней мере, в одном синдроме головные боли и эпиприступы часто сопровождается инсультоподобными эпизодами

Дополнительно к поражению глазных мышц, митохондриальная энцефаломиопатия может поражать как сами глаза, так и участки головного мозга, ответственные за зрение. Например, потеря зрения вследствие оптической атрофии (дегенерации зрительного нерва) или ретинопатии (дегенерации некоторых клеток, выстилающих глазное дно) - обычные симптомы митохондриальной энцефаломиопатии. По сравнению с мышечными проблемами, эти эффекты с большей вероятностью приводят к серьезным нарушениям зрения

Довольно часто митохондриальная энцефаломиопатия вызывает атаксию, или сложности с балансом и координацией.

Диагностика.

Ни один из отличительных симптомов митохондриального заболевания - мышечная слабость, непереносимость нагрузок, ухудшение слуха, атаксия, эпиприступы, неспособность к обучению, катаракта, диабет и низкорослость - не является уникальным именно для такого заболевания. Однако комбинация трех или более из этих симптомов у одного индивида свидетельствует в пользу митохондриального заболевания, особенно если симптомы затрагивают более одной системы организма

Физикальное обследование обычно включает в себя тесты на силу и выносливость, такие например, как повторяющиеся сжатия-разжатия кулака, или подъем и спуск по небольшой лестнице. Неврологическое обследование может включать в себя проверку рефлексов, зрения, речи и базовых когнитивных способностей.

Существует ряд рутинных клинических методов исследования, которые можно использовать при подозрении на митохондриальную цитопатию:

Лактатный ацидоз является практически постоянным спутником митохондриальных болезней (только этот признак является недостаточным для постановки диагноза, так как он может выявляться и при других патологических состояниях; в этом отношении может быть полезным измерение уровня лактата в венозной крови после умеренной физической нагрузки, например на велоэргометре)

ЭМГ-исследование - само по себе данное исследование также не могут быть маркером митохондриальной цитопатии; вместе с тем нормальная или близкая к нормальной ЭМГ у пациентов с выраженной мышечной слабостью может быть подозрительной в отношении митохондриальной патологии.

ЭЭГ - данные ЭЭГ не является достаточно специфическими

Биопсия скелетных мышц - является наиболее информативным методом при постановке диагноза митохондриальной цитопатии - помимо обнаружения RRF при трехцветной окраске по Гомори, полезными являются другие гистохимические и иммунологические исследования: окраска на цитохромс-оксидазу и сукцинатдегидрогеназу, иммунногистохимические исследования с применением антител к отдельным субъединицам дыхательного комплекса; мышечная ткань удобна для биохимического исследования респираторной цепочки, а также как материал для генетического исследования.

Образцы мышечных биоптатов целесообразно делить на три части - одна для микроскопического исследования (гистология, гистохимия и электронная микроскопия), вторая для энзимологического и иммунологического анализа (изучение характеристик компонентов дыхательной цепи) и третья - непосредственно для молекулярно-генетического анализа. Поиск известных мутаций на мышечном материале позволяет в большинстве случаев успешно осуществлять ДНК-диагностику болезни. При отсутствии из вестных мутаций мтДНК в мышечной ткани следующим этапом является развернутый молекулярно-генетический анализ - секвенирование всей цепи мтДНК (или кандидатных генов ядерной ДНК) с целью выявления нового варианта мутации.

Электронно-микроскопическое исследование скелетных мышц - дает прекрасные результаты, поэтому данный метод надо использовать, если имеется такая возможность

Лечение.

Что касается терапии митохондриальных цитопатий, то речь может идти пока только о симптоматической.

Лечение митохондриальных болезней проводится обычно по двум основным направлениям:

Повышение эффективности энергетического обмена в тканях (тиамин, рибофлавин, никотинамид, коэнзим Q10 (кудесан), L-карнитин (элькар), препараты кальция и магния. , витамин С, цитохром С)

Предупреждение повреждения митохондриальных мембран свободными радикалами с помощью антиоксидантов (витамин Е, a-липоевая кислота) и мембранопротекторов.

В практику входят всё новые препараты комбинированного действия, такие, например, как идебенон (Нобен) - улучшенный структурный аналог коэнзима Q10, благоприятно влияющий на активность дыхательного пути и обладающий выраженным антиоксидантным, антиапоптотическим и нейротрофическим действием.

Очевидно, что расширение терапевтического арсенала при митохондриальных болезнях диктует настоятельную необходимость того, чтобы практические врачи различных специальностей (неврологи, психиатры, педиатры, генетики, гематологи и др.) были хорошо знакомы с алгоритмом диагностики этих заболеваний.

Наследственные болезни человека - обусловлены патологическими мутациями, которые передаются из поколения в поколение. Эти мутации могут быть локализованы как в половых хромосомах X или Y, так и в обычных. В первом случае характер наследования заболеваний различается у мужчин и женщин, во втором - пол не будет иметь значения в закономерностях наследования генетических мутаций. Наследственные болезни разделяют на две группы: хромосомные и генные .

Генные заболевания, в свою очередь, разделяют на моногенные и мультифакториальные . Происхождение первых зависит от наличия мутаций в определенном гене. Мутации могут нарушать структуру, повышать или снижать количественное содержание кодируемого геном белка.

Во многих случаях у больных не обнаруживается ни активности мутантного белка, ни его иммунологических форм. В результате нарушаются соответствующие обменные процессы что, в свою очередь, может приводить к аномальному развитию или функционированию различных органов и систем больного. Мультифакториальные заболевания - обусловлены комбинированным действием неблагоприятных факторов окружающей среды и генетических факторов риска, формирующих наследственную предрасположенность к заболеванию. К этой группе заболеваний относятся подавляющее большинство хронических болезней человека с поражением сердечно-сосудистой, дыхательной, эндокринной и других систем. К этой группе заболеваний можно отнести и ряд инфекционных болезней, чувствительность к которым во многих случаях также генетически детерминирована.

С определенной долей условности мультифакториальные болезни можно разделить на:

Врожденные пороки развития

Распространенные психические и нервные болезни

Распространенные болезни среднего возраста.

ВПР мультифакториальной природы - расщелина губы и неба, спинно-мозговая грыжа, стеноз привратника, анэнцефалия и черепно-мозговая грыжа, вывих бедра, гидроцефалия, гипоспадия, косолапость, астма бронхиальная, диабет сахарный, язвенная болезнь желудка и двенадцатиперстной кишки, ревматоидный артрит, коллагенозы. Генные болезни - это большая группа заболеваний, возникающих в результате повреждения ДНК на уровне гена, употребляется в отношении моногенных заболеваний. Примеры:

Фенилкетонурия - нарушение превращения фенилаланина в тирозин из-за резкого снижения активности фенилаланингидроксилазы

Алкаптонурия - нарушение обмена тирозина вследствие пониженной активности фермента гомогентизиназы и накоплением в тканях организма гомотентизиновой кислоты

Глазно-кожный альбинизм - обусловлен отсутствием синтеза фермента тирозиназы.

Болезнь Ниманна-Пика - снижение активности фермента сфингомиелиназы, дегенерация нервных клеток и нарушение деятельности нервной системы

Болезнь Гоше - накопление цереброзидов в клетках нервной и ретикуло-эндотелиальной системы, обусловленное дефицитом фермента глюкоцереброзидазы.

Синдром Марфана паучьи пальцы, арахнодактилия - поражение соединительной ткани вследствие мутации в гене, ответственном за синтез фибриллина.

Хромосомные болезни - относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Примеры: Болезни, обусловленные нарушением числа аутосом неполовых хромосом

Синдром Дауна - трисомия по 21 хромосоме, к признакам относятся: слабоумие, задержка роста, характерная внешность, изменения дерматоглифики

Синдром Патау - трисомия по 13 хромосоме, характеризуется множественными пороками развития, идиотией, часто - полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года

Синдром Эдвардса - трисомия по 18 хромосоме, нижняя челюсть и ротовое отверстие маленькие, глазные щели узкие и короткие, ушные раковины деформированы; 60% детей умирают в возрасте до 3-х месяцев, до года доживают лишь 10%, основной причиной служит остановка дыхания и нарушение работы сердца.

Болезни, связанные с нарушением числа половых хромосом

Синдром Шерешевского - Тёрнера - отсутствие одной Х-хромосомы у женщин 45 ХО вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость, половой инфантилизм и бесплодие, различные соматические нарушения микрогнатия, короткая шея и др.

Полисомия по Х-хромосоме - включает трисомию кариотии 47, XXX, тетрасомию 48, ХХХХ, пентасомию 49, ХХХХХ, отмечается незначительное снижение интеллекта, повышенная вероятность развития психозов и шизофрении с неблагоприятным типом течения

Полисомия по Y-хромосоме - как и полисомия по X-хромосоме, включает трисомию кариотии 47, XYY, тетрасомию 48, ХYYY, пентасомию 49, ХYYYY, клинические проявления также схожи с полисомией X-хромосомы

Синдром Клайнфельтера - полисомия по X- и Y-хромосомам у мальчиков 47, XXY; 48, XXYY и др., признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.

Болезни, причиной которых является полиплоидия триплоидии, тетраплоидии и т. д.; причина - нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного 23 диплоидный 46 набор хромосом, то есть 69 хромосом у мужчин кариотип 69, XYY, у женщин - 69, XXX; почти всегда летальны до рождения.

Митохондриальные заболевания - группа наследственных заболеваний, связанных с дефектами в функционировании митохондрий, приводящими к нарушениям энергетических функций в клетках эукариотов, в частности - человека. Обусловлены генетическими, структурными, биохимическими дефектами митохондрий, приводящими к нарушениям тканевого дыхания. Они передаются только по женской линии к детям обоих полов, так как сперматозоиды передают зиготе половину ядерного генома, а яйцеклетка поставляет и вторую половину генома, и митохондрии.

Примеры: Помимо относительно распространённой митохондриальной миопатии , встречаются

Митохондриальный сахарный диабет, сопровождающийся глухотой DAD, MIDD,

Синдром MELAS - это сочетание, проявляющееся в раннем возрасте, может быть вызвано мутацией митохондриального гена MT-TL1, но сахарный диабет и глухота могут быть вызваны как митохондриальными заболеваниями, так и иными причинами

Наследственная оптическая нейропатия Лебера, характеризующийся потерей зрения в раннем пубертатном периоде

Синдром Вольфа-Паркинсона-Уайта

Рассеянный склероз и подобные ему заболевания

синдром Лея Leigh или подострая некротизирующая энцефаломиопатия: После начала нормального постнатального развития организма болезнь обычно развивается в конце первого года жизни, но иногда проявляется у взрослых. Болезнь сопровождается быстрой потерей функций организма и характеризуется судорогами, нарушенным состоянием сознания, деменцией, остановкой дыхания.

"
Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!