Мода и стиль. Красота и здоровье. Дом. Он и ты

Как построить диаграмму hs. Водяной пар

ВОДЯНОЙ ПАР. ДИАГРАММА H,S ВОДЯНОГО ПАРА. ИССЛЕДОВАНИЕ ПАРОВЫХ ПРОЦЕССОВ ПО ДИАГРАММЕ H,s

Вода и. водяной пар широко применяются в энергетике, в отоплении, вентиляции, горячем водоснабжении.

Водяной пар - реальный газ. Он может быть влажным, сухим насыщенным и перегретым. Уравнения состояния реальных тазов сложны, поэтому в теплотехнических расчетах предпочитают использовать таблицы и диаграммы. Особое значение для технических расчетов процессов с водяным паром имеет h,s -диаграмма водяного пара.

В диаграмме h,S нанесена (рис. 5.1) верхняя пограничная кривая (степень сухости пара X=1) соответствующая сухому насыщенному пару. Выше этой кривой располагается область перегретого пара.

Рисунок 5.1 Диаграмма h,S водяного пара

Ниже влажного насыщенного пара. В область влажного насыщенного пара нанесены кривые сухости (X=0,95; Х=0,90; X=0.85 и т.д.)

В координатных, осях h,S (рис.5.1) нанесены кривые простейших процессов р=сonst (изобары); v= сonst (изохоры); t =сonst (и термы); любая вертикальная линия (рис.5.2.) изображает адиабатный процесс (S=const).

В области влажного насыщенного пара изотермы (t =сonst)совпадают с кривыми изобары (р=сonst), так как парообразование происходит при постоянном давлении и при постоянной температуре. На верхней пограничной кривой направление изотермы меняется и в пограничной кривой направление изотермы меняется, и области перегретого пара изотермы отклоняются вправо, и не совпадают с изобарами.

Практически применяется часть диаграммы h,S , когда X 0,5 , которая заключена в рамку. Эта часть диаграммы приведена в прило­жении и на рис.5.2.

Состояние перегретого пара на диаграмме h,S определяется двумя параметрами (р 1 и t 1 или р 1 и v 1), а влажного насыщенного па­ра - одним параметром и степенью сухости пара Х. По 2 заданным па­раметрам р 1 и t 1 в области перегретого пара находим точку I (рис. 5.2.), соответствующую заданному состоянию водяного пара. Для этого состояния из диаграммы можно найти все другие параметры (h 1 ,s 1 ,v 1).

Значение внутренней анергии подсчитывается по формуле

Зная вид термодинамического процесса, двигаются по нему до пе­ресечения с заданным конечным параметром и находят на диаграмме конечное состояние пара..Определив параметры коночного состояния, можно рассчитывать показатели процесса (работу, теплоту, изменение параметров)

Изменение внутренней энергии и работу в любом процессе подсчи­тывают по формулам

Рассмотрим основные задачи, решаемые по h,S диаграмме.

Изохорный процесс (v= const)

Количество теплоты, участвующая в процессе, определяется по формуле 5.2,. для определения изменения внутренней энергии.

Работа изохорного процесса равна нулю.

Изобарный процесс (р=сonst), количество теплоты, участвующая в процессе определяется по формуле

Изменение внутренней энергии по формуле 5.2 или по формуле 5.3

Изотермный процесс (t =сonst).

Теплоту и работу процесса находят по формуле:

5.6

Адиабатный процесс . На рис. 5.2. представлен адиабатный процесс, протекающий без теплообмена с внешней среда. В адиабатном процессе энтропия не изменяется и очень часто этот процесс называется изоэнтропным.

В инженерной практике широкое применение находит h,s- диаграмма для воды и водяного пара. Такое широкое использование h,s- диаграммы в теплоэнергетических расчетах обусловлено тем, что для основных процессов теплоэнергетических установок (изобарного, Р=const, и адиабатного, s=const) разности энтальпий представляют их главные энергетические характеристики: количество теплоты или техническую работу, которые в h,s- диаграмме могут быть элементарно представлены отрезками вертикальных прямых линий. В Т,s- диаграмме эти величины представляются сложными площадями.

Диаграмма h,s строится по данным таблиц термодинамических свойств воды и водяного пара. На рис. 6.22 приведен общий вид такой диаграммы для воды и водяного пара.

За начало отсчета энтропии в h,s- диаграмме, как и в Т,s- диаграмме, приняты параметры тройной точки жидкой фазы воды. В этой точке s о "=0 и u о "=0, а энтальпия h о " = 0,000614 кДж/кг будет больше нуля, но численное ее значение очень мало. Следовательно, начало линии х=0, соответствующее тройной точке воды, расположено очень близко к началу координат. При повышении давления и температуры энтальпия h" и энтропия s" жидкости на линии насыщения растут до критической точки и пограничная линия х=0 представляется вогнутой кривой ОК.

Пограничная кривая сухого насыщенного пара х=1 имеет вид кривой КN. Максимальное значение энтальпии (ординаты) этой кривой h" мах =2801,9 кДж/кг достигается при давлении около 30 бар и энтропии 6,18 кДж/(кг·К). Следует обратить внимание на то, что критическая точка находится левее и ниже точки максимальной энтальпии h" мах, а вся пограничная кривая х=1 располагается выше горизонтали, проведенной из критической точки.


Изотерма 0 o С в области жидкости имеет сложную форму ОВ, определяемую аномалией воды. Максимум энтропии линии ОВ около 0,9 Дж/(кг·К) при давлении около 240 бар и энтальпии 24 кДж/кг. При давлениях выше 240 бар нулевая изотерма уходит влево и при 1000 бар достигает значения h o "=95,9 кДж/кг и s о "=-6,7 Дж/(кг·К).

Изобара в h,s- диаграмме представляет собой непрерывно поднимающуюся линию, форма которой устанавливается соотношением

¶q p = dh p = (Tds) p ,

откуда получается угловой коэффициент изобары

Таким образом, он определяется абсолютной температурой. Следовательно, изобары жидкости представляют собой вогнутые кривые, идущие слева направо, поскольку процесс нагрева жидкости 12 сопровождается возрастанием энтропии и повышением температуры.

В процессе изобарного парообразования 23 температура остается постоянной, и участок изобары 23 представляет прямую, угол наклона которой определяется температурой насыщения Т н. На пограничных кривых (х=0 и х=1) вода имеет одну и ту же температуру, следовательно, прямая 2-3 является касательной к кривым 12 и 34.

С повышением давления увеличивается температура насыщения, и, как следует из (6.29), в области влажного пара изобары – изотермы веерообразно расходятся.

Изобара парообразования 23 плавно переходит в изобару перегретого пара 34, представляя собой вогнутые расходящиеся кривые, при большой степени перегрева приближающиеся к эквидистантным кривым логарифмического характера (как для газов).

Критическая изобара проходит через критическую точку К и представляет собой вогнутую кривую. Изобары сверхкритического давления имеют такой же вид. Изобара наивысшего давления ограничивает поле диаграммы. Для точек, расположенных левее этой изобары, табличных данных нет. Такую же роль ограничивающей линии снизу в области перегретого пара и в области влажного пара выполняет изобара с давлением 1 кПа.

В области жидкости изобары докритических давлений мало отступают от линии х=0. Поэтому их часто считают совпадающими с нижней пограничной кривой.

Изотермы в h,s- диаграмме представляют собой сложные линии. Изотермы жидкости при низких температурах, начиная от 0 о С, с повышением давления поднимаются вверх (кривые выпуклостью вверх); при высоких температурах – кривая выпуклостью вниз.

В области влажного пара изотермы совпадают с изобарами. В области перегретого пара изотермы имеют вид кривых выпуклостью вверх, идущих слева направо. При низких температурах кривизна и подъем незначительны. При температурах, близких к критической, в области высоких давлений изотермы перегретого пара круто идут вверх, имея большую кривизну. В областях низких давлений все изотермы перегретого пара приближаются к горизонтальным прямым (свойства пара близки к свойствам идеальномого газа).

Изотерма наивысшей, имеющейся в таблицах температуры рассматривается как линия, ограничивающая диаграмму сверху. Для состояний выше этой изотермы табличных данных нет.

Изохоры в h,s- диаграмме представляют собой плавные кривые, круче изобар. Они могут пересекать только одну пограничную кривую (х=0 или х=1), в зависимости от того, удельный объем их меньше или больше удельного объема воды в критической точке.

На рис. 6.22 выделена изобара 1234 и показаны в виде отрезков значения энтальпии, энтропии и их разности для характерных состояний воды и пара на этой изобаре. Точке 1 соответствует состояние жидкости при t=0 о С и данном давлении. На рис. 6.22 область жидкости увеличена по масштабу по сравнению с областями пара, это сделано для большей наглядности в изображении линий. Так при Р = 100 бар и t=0 о С в точке 1 энтальпия воды h 0 = 10,1 кДж/кг (для сравнения, при том же давлении h" = 417,5 кДж/кг и h"= 2675,7 кДж/кг). Точкой е отмечено состояние влажного пара со степенью сухости х. Линия x = const строится из соотношения



.

Для практических расчетов используется не полная диаграмма h,s, а только ее рабочая зона в области пара, наиболее часто применяемая в инженерной практике. Она располагается правее критической точки, включая в себя области влажного пара и перегретого пара (рис. 6.23). Левая область не изображается, так как в ней линии изобар, изотерм, изохор и постоянные степени сухости располагаются очень близко друг от друга и неудобны в практическом использовании.

Применяя рабочую диаграмму h,s, можно получить полную информацию о паре, состояние которого задано точкой. Так, например, на рис. 6.23 в диаграмме h,s задана точка 1, определяющая состояние влажного насыщенного пара. Положение точки задается двумя параметрами, например давлением Р 1 и степенью сухости x 1 . По осям координат читаются значения энтальпии h 1 и энтропии s 1 . Через точку 1 проходит изохора, определяющая удельный объем пара v 1 . Температура t 1 определяется по изотерме, проходящей через точку 1 и ответвляющейся от изобары P 1 на пограничной кривой x = 1 в области перегретого пара. Аналогично находятся параметры состояния пара, заданного любой точкой (парой параметров) в диаграмме h,s. Параметры точек, выходящих за пределы области рабочей h,s- диаграммы водяного пара, находятся по таблицам термодинамических свойств воды

При проведении технико-экономических расчётов для подбора оборудования в теплоэнергетике и других отраслях, и моделирования тепловых процессов, необходимы надёжные проверенные данные о теплофизических свойствах воды и водяного пара в широкой области давлений и температур.

Ещё в 1904 году немецкий теплофизик Рихард Молье разработал специальную диаграмму для упрощения и облегчения решений практических задач по теплотехнике, в которой в координатах энтальпии (h) и энтропии (s) графически отображаются сведения из таблиц состояний. s-диаграммы чаще всего содержат в себе данные о свойствах воды в жидком и газообразном состояниях, так как они представляют наибольший интерес с точки зрения теплотехники.

$h-s$ диаграмма воды и водяного пара.

Водяной пар для промышленных целей получают в парогенераторах (паровых котлах) различного типа, общим для которых является то, что процесс получения пара является изобарным. Температура кипения воды и образующегося из нее пара является при этом постоянной, она зависит только от давления парогенератора и называется температурой насыщения $t_н$.

Пар, температура которого равна температуре насыщения, называется насыщенным (пар находится в термодинамическом равновесии с кипящей жидкостью). Насыщенный пар, не содержащий примеси жидкости, называют сухим насыщенным паром . Смесь сухого насыщенного пара и кипящей жидкости называется влажным насыщенным паром . Массовая доля сухого насыщенного пара в этой смеси называется степенью сухости и обозначается x. Для сухого насыщенного пара $x=1$, для кипящей жидкости $x=0$, для влажного насыщенного пара $0

Под теплотой парообразования $r$ понимают количество теплоты, необходимое для превращения 1 кг кипящей жидкости при постоянном давлении (следовательно, и при постоянной температуре) в сухой насыщенный пар.

Параметры кипящей жидкости – удельный объем, энтальпия, энтропия – обозначаются, соответственно, $v"$, $h"$, $s"$, а параметры сухого насыщенного пара – $v""$, $h""$, $s""$. Параметры влажного насыщенного пара обычно обозначают $v_x$, $h_x$ и $s_x$ и определяют по следующим формулам как для смеси кипящей воды и сухого пара:

$$v_x=v""·x+v"·(1–x),$$ $$h_x=h""·x+h"·(1–x),$$ $$s_x=s""·x+s"·(1–x).$$

Параметры перегретого пара обозначают без каких-либо штрихов и индексов, т.е. $v$, $h$ и $s$.

Поскольку водяной пар получают в изобарном процессе, то количество теплоты, подводимой к рабочему телу, можно подсчитать как разность энтальпий в конце и начале процесса. Это очень удобно, т.к. позволяет обойтись без теплоемкости, которая в данном случае (реальный газ) зависит не только от температуры, но и от давления.

Теплота парообразования, учитывая сказанное, равна:

$$r=h""–h".$$

На рисунке представлена диаграмма $h-s$ водяного пара. На этой диаграмме показаны нижняя пограничная кривая ($х=0$) или линия кипящей жидкости и верхняя пограничная кривая ($х=1$) или линия сухого насыщенного пара. Пограничные кривые соединяются в критической точке $К$, обозначающей критическое состояние воды, когда нет различия между кипящей жидкостью и сухим паром. Пограничные линии делят диаграммы на области капельной жидкости (воды), влажного насыщенного пара и перегретого пара. В области влажного пара изобары и изотермы совпадают.


Изолинии на $h-s$ диаграмме воды и водяного пара.

С развитием современной электронно-вычислительной техники и появлением доступных компьютеров и приложений, большое распространение получили hs-диаграммы в электронном виде.

Например симулятор диаграмм HS, TS, PS, PT, PV для воды и водяного пара с расчетом теплофизических свойств по формуляру IAPWS-IF97 и дополнений к нему.

В зависимости от положения курсора (управление мышью и стрелками клавы) выводятся p, T, h, s, v, x выбранной точки. Возможен также ручной ввод данных и перемещения для режимов: p-const, T-const, h-const, s-const, v-const, x-const. В симуляторе присутствует возможность построения и просмотра термодинамических графиков с сохранением в файл. Изменение масштаба - с помощью ползунка или колесика мыши. Данная программа является самым наглядным и удобным способом нахождения термодинамических параметров воды и водяного пара, к тому же она бесплатная.

Создание

При проведении технико-экономических расчётов для подбора оборудования в теплоэнергетике и других отраслях, и моделирования тепловых процессов, необходимы надёжные проверенные данные о теплофизических свойствах воды и водяного пара в широкой области давлений и температур .

Многолетнее международное сотрудничество в области исследования свойств воды и водяного пара, позволило разработать и внедрить международные нормативные материалы, содержащие уравнения для описания различных свойств, в специальные таблицы. На основании этих уравнений, соответствующих требованиям Международной системы уравнений для научного и общего применения (The IFC Formulation for Scientific and Generale Use), были составлены и опубликованы подробные таблицы теплофизических свойств воды и водяного пара, которые широко применяются в практике инженерных теплотехнических расчётов. Данные, полученные путём расчёта по международным уравнениям, были приняты и в СССР , и получили определение таблиц термодинамических свойств воды и водяного пара. В них также включили данные по динамической вязкости.


Wikimedia Foundation . 2010 .

Смотреть что такое "H, s-диаграмма" в других словарях:

    Для системы Fe H2O … Википедия

    Диаграмма Исикавы т. н. диаграмма «рыбьей кости» (англ. Fishbone Diagram) или «причинно следственная» диаграмма (англ. Cause and Effect Diagram), а также как диаграмма «анализа корневых причин». Один из семи основных… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звёздная величина) показывает зависимость между абсолютной звёздной величиной,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

Здравствуйте! Определять параметры и функции состояния по формулам зачастую бывает затруднительно вследствие сложной зависимости теплоемкости водяного пара и теплоты парообразования от температуры и давления. Поэтому для водяного пара, на основании экспериментальных исследований составлены таблицы, отражающие зависимости важнейших параметров водяного пара. Пользуясь ими, к примеру, по известному давлению сухого насыщенного пара можно определить все остальные параметры.

Так как состояние сухого насыщенного пара однозначно определяется его давлением р или температурой насыщения Тн, то таблицы составляются по давлению или температуре. По одному из этих параметров из таблиц можно определить другие величины, характеризующие состояние сухого насыщенного пара. В таблицах перегретого пара приводятся его параметры и функции состояния в зависимости от температуры и давления пара.

Расчет процессов изменения состояния пара упрощается при переходе к графическому методу, основанному на использовании диаграмм состояния. В этом случае не требуется проводить большой объем вычислений и расчет сводится к определению параметров с помощью диаграмм. Графическим методом легко определить не только начальные и конечные параметры пара в процессе, но и все промежуточные параметры состояния, что существенно упрощает инженерные расчеты.

Преимуществом графического метода является возможность сравнительно просто проследить связь между различными величинами, это делает его незаменимым при теоретическом анализе различных процессов в тепловых двигателях. С помощью диаграммы, как и по таблицам, можно определить параметры и функции состояния водяного пара, в том числе и влажного насыщенного пара.

Наибольшее распространение получили Ts- и is-диаграммы состояния водяного пара. Так как с помощью Ts-диаграммы легко определить количество теплоты в процессе, то она и применяется в основном для теоретического анализа экономичности тепловых двигателей. При расчетах различных процессов изменения состояния используется главным образом is- диаграмма водяного пара.

На рис. 1 в координатах Ts изображен процесс парообразования при р = const (процесс abcd). Кривая аКс является пограничной кривой, а точка К - критической точкой. Начало отсчета энтропии соответствует ее значению при 273 К. Площадь под кривой процесса на is-диаграмме соответствует количеству теплоты.

Следовательно, площадь под изобарой ab эквивалентна энтальпии воды i" при температуре парообразования Tн. На изобарном участке bс, совпадающем с изотермой, происходит процесс парообразования, и площадь под прямой bс соответствует теплоте парообразования г. В изобарном процессе перегрева cd температура пара повышается до значения Т, и к пару подводится количество теплоты срm (Т-Тн). Линии постоянной степени сухости х=const, как и на всех диаграммах, сходятся в критической точке К.

На рис. 2 показаны различные процессы изменения состояния водяного пара на is-диаграмме. Область диаграммы, расположенная левее пограничной кривой еК, соответствует состоя-нию жидкости. Пограничная кривая пара Kf делит диаграмму на две области. Выше этой кривой расположена область перегретого пара, а ниже - область влажного пара. На пограничной кривой Kf пар является сухим насыщенным (х=1). Изобарный процесс изображен линией abc, изотермический - abd (в области влажного пара изотерма и изобара совпадают), изохорный - υ=const и адиабатный - gh. Кроме того, на этом рисунке показаны линии постоянной степени сухости х = const. В таблицах и на диаграммах не приводятся значения внутренней энергии газа, которую можно определить из соотношения u = i-pυ.

На рис. 3 приведена is-диаграмма водяного пара. При графическом расчете процессов по любым двум известным величинам (р, υ, Т; х, i, s) находят на диаграмме точку, соответствующую начальному состоянию пара, и все неизвестные параметры. Конечное состояние пара можно определить также по двум известным параметрам состояния. Если задан только один конечный параметр состояния, то необходимо знать еще характер процесса. В этом случае точку, характеризующую конечное состояние, находят на пересечении заданной кривой процесса и соответствующей изопараметрической кривой, например изобары.

Пример. Определить количество теплоты, сообщаемой 1 кг пара в пароперегревателе котельного агрегата. Начальные параметры пара p1 = 5 МПа и x1=0,95. Известно также, что после адиабатного расширения пара в турбине х2 = 0,87, а конечное давление пара р2=0,01 МПа.

Решение. Так как в пароперегревателе к пару подводится теплота при постоянном давлении, то количество ее равно разности начальной энтальпии i1 и энтальпии i2 пара после пароперегревателя: q=i2-i1. По начальным параметрам пара p1 и x1 на is-диаграмме находим точку А (рис. 3), которой соответствует значение энтальпии i1=2720 кДж/кг. Точку В, соответствующую состоянию пара на выходе из пароперегревателя, находим на пересечении изобары p1=5 МПа и адиабаты ВС, которая проходит через точку С. Положение точки С определяется параметрами пара р2 и x2. Энтальпия пара в точке В i2 = 3600 кДж/кг.
Количество подведенной к 1 кг пара теплоты равно q = 3600—2720=880 кДж/кг. Рассмотренный пример показывает, что is-диаграмма значительно упрощает расчеты процессов для водяного пара. Исп.литература: 1) Теплотехника и теплотехническое оборудование предприятий промышленности строительных материалов и изделий, Н.М. Никифорова, Москва, «Высшая школа», 1981. 2) Теплотехника, Бондарев В.А., Процкий А.Е., Гринкевич Р.Н. Минск, изд. 2-е,"Вышейшая школа", 1976.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!