Мода и стиль. Красота и здоровье. Дом. Он и ты

Графики тригонометрических функций - презентация. Презентация на тему "тригонометрические функции" Задания презентация графики тригонометрических функций

    Слайд 1

    Тема: Свойства тригонометрических функций. Цели урока: 1. Повторить тему «Исследование функций». 2. Систематизировать знания о свойствах тригонометрических функций. 3. Развивать интерес к математике. 4. Воспитывать уважение друг к другу. 5. Воспитание культуры поведения в общественном месте. 5klass.net

    Слайд 2

    Сегодня на уроке я приглашаю вас посетить «Математическое кафе». Каждой паре предлагается сесть за отдельный столик (девушка и парень). Всем посетителям «Математического кафе» предлагается меню, которое состоит из холодных закусок, первого, второго и третьего блюда и десерта.

    Слайд 3

    Холодные закуски. Кроссворд «Математические термины»Задание: Необходимо вставить пропущенные буквы, если в каждой строке есть только первая и последняя буквы слова.

    Слайд 4

    Первые блюда. Сформулировать или дать определение каждому свойству функции 1) f(- x) = f(x) 2) f(x) = f(x – T) = f(x + T) 3) f(- x) = - f(x) 4). Если x2 > x1, то f(x2) > f(x1) 5). Точки максимума и минимума функции 6). Промежутки, в которых функция принимает либо положительные значения, либо принимает отрицательные значения 7). Если x2 > x1, то f(x2)

    Слайд 5

    Гимнастика для глаз

    Зажмурьте глаза, откройте глаза (повторите 5 раз) Сделайте круговые движения глазами, головой не вращая (повторите 10 раз).

    Слайд 6

    Прочитайте график функции

  • Слайд 7

    Вторые блюда.

    Чтение графика функции (можно использовать схему исследования графика функции). Схема исследования функции: Область определения функции Область значений функции Четность или нечетность, периодичность функции Пересечение графика функции с осями координат Промежутки знакопостоянства функции Промежутки возрастания и убывания функции Точки экстремума функции, вид экстремума (максимум или минимум), значения функции в этих точках

    Слайд 8

    Физкультминутка

    Исходное положение – стоя, руки опущены вниз. На счет «раз» - поднять руки вверх, подняться; на счет «два» - вернуться в исходное положение (повторить 5 – 6 раз). Исходное положение – стоя, руки опущены вниз. На счет «раз» - поднять правую руку вверх, левую ногу отставить назад, прогнуться; на счет «два» - вернуться в исходное положение; на счет «три» - поднять левую руку вверх, отставить правую ногу назад, прогнуться; на счет «четыре» - вернуться в исходное положение (повторить 5 – 6 раз).

«Тригонометрические функции »

«Скажи мне, и я забуду, Покажи мне, и я запомню, Вовлеки меня, и я научусь». (Китайская пословица)

Учитель математики

Самолысова Т.В.

МБОУ Страшевичская СОШ







График, какой функции изображен на рисунке:

3)y = tg x 4)y = ctg x


«Тригонометрические функции» нужны в каждой профессии.»

1. Сварщики (При подготовке металла к сварке и резке)

2. Электрики (При изучении электромагнитных волн – гармонические колебания)

3. Автомеханики (При изучении балансировки колес, резонансных систем автомобиля)

4. Мастера отделочных работ (При креативной покраске стен)


Автомеханики. Дан график колебаний поршня двигателя автомобиля. Определить период колебания (T). График какой функции изображён на рисунке?


Электромонтер.

Дан график колебаний в колебательном контуре радиопередатчика. Определить напряжение (U) и период колебания (T). График какой функции изображён на рисунке?


« Математику нельзя изучать, наблюдая, как это делает сосед » (А. Нивен)


1)Найти область определения функции:

2)Найти множество значений функции:

y=12sinx - 5cosx

3)Найти наименьший положительный период функций

Решение задач


Решение задач

Построить графики функций:


Решить графически неравенство cos x ≤ sin x

Ответ: П/4+2Пn≤X≤5П/4+2Пn, n  Z


Самостоятельная работа

Счастливая случайность выпадает лишь на долю подготовленных умов Луи Пастер


Мышление начинается с удивления Аристотель


Тригонометрия в ладони


На экране физических приборов.


Движение по синусоиде

Данный график часто используется в жизни. В частности есть даже такое выражение движение по синусоиде.


В строительстве


Синусоиду можно встретить в природе


Подведение итогов

Стали выше еще на одну ступеньку в изучении математики

Нашли связь между ………….. И …………….

Повторили …………….


Домашнее задание

1. Составить кроссворд по данной теме.

2.Найдите период функции y = 3*cos (x + π /4)

3. Построить график функции у = cos(х + π/4) + 1

Графики тригонометрических функций Функция у = sin x, ее свойства Преобразование графиков тригонометрических функций путем параллельного переноса Преобразование графиков тригонометрических функций путем сжатия и расширения Для любознательныхДля любознательных…




Тригонометрические функции3 Свойства функции у = sin x 5. Промежутки знакопостоянства: У>0 при х (0+2 n; +2 n), n Z У 0 при х (0+2 n; +2 n), n Z У"> 0 при х (0+2 n; +2 n), n Z У"> 0 при х (0+2 n; +2 n), n Z У" title="тригонометрические функции3 Свойства функции у = sin x 5. Промежутки знакопостоянства: У>0 при х (0+2 n; +2 n), n Z У"> title="тригонометрические функции3 Свойства функции у = sin x 5. Промежутки знакопостоянства: У>0 при х (0+2 n; +2 n), n Z У">










Тригонометрические функции8 Преобразование графиков тригонометрических функций График функции у = f (x+в) получается из графика функции у = f(x) параллельным переносом на (-в) единиц вдоль оси абсцисс График функции у = f (x)+а получается из графика функции у = f(x) параллельным переносом на (а) единиц вдоль оси ординат












1) вдоль оси ординат График функции у = k f" title="тригонометрические функции14 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у =k f (x) получается из графика функции у = f(x) путем его растяжения в k раз (при k>1) вдоль оси ординат График функции у = k f" class="link_thumb"> 14 тригонометрические функции14 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у =k f (x) получается из графика функции у = f(x) путем его растяжения в k раз (при k>1) вдоль оси ординат График функции у = k f (x) получается из графика функции у = f(x) путем его сжатия в k раз (при 0 1) вдоль оси ординат График функции у = k f"> 1) вдоль оси ординат График функции у = k f (x) получается из графика функции у = f(x) путем его сжатия в k раз (при 0"> 1) вдоль оси ординат График функции у = k f" title="тригонометрические функции14 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у =k f (x) получается из графика функции у = f(x) путем его растяжения в k раз (при k>1) вдоль оси ординат График функции у = k f"> title="тригонометрические функции14 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у =k f (x) получается из графика функции у = f(x) путем его растяжения в k раз (при k>1) вдоль оси ординат График функции у = k f">




1) вдоль оси абсцисс График функции у = f (kx) " title="тригонометрические функции16 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у = f (kx) получается из графика функции у = f(x) путем его сжатия в k раз (при k>1) вдоль оси абсцисс График функции у = f (kx) " class="link_thumb"> 16 тригонометрические функции16 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у = f (kx) получается из графика функции у = f(x) путем его сжатия в k раз (при k>1) вдоль оси абсцисс График функции у = f (kx) получается из графика функции у = f(x) путем его растяжения в k раз (при 0 1) вдоль оси абсцисс График функции у = f (kx) "> 1) вдоль оси абсцисс График функции у = f (kx) получается из графика функции у = f(x) путем его растяжения в k раз (при 0"> 1) вдоль оси абсцисс График функции у = f (kx) " title="тригонометрические функции16 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у = f (kx) получается из графика функции у = f(x) путем его сжатия в k раз (при k>1) вдоль оси абсцисс График функции у = f (kx) "> title="тригонометрические функции16 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у = f (kx) получается из графика функции у = f(x) путем его сжатия в k раз (при k>1) вдоль оси абсцисс График функции у = f (kx) ">




Тригонометрические функции18 Преобразование графиков тригонометрических функций путем сжатия и растяжения Графики функций у = -f (kx) и у=-k f(x) получаются из графиков функций у = f(kx) и y= k f(x) соответственно путем их зеркального отображения относительно оси абсцисс синус – функция нечетная, поэтому sin(-kx) = - sin (kx) косинус –функция четная, значит cos(-kx) = cos(kx)






Тригонометрические функции21 Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у = f (kx+b) получается из графика функции у = f(x) путем его параллельного переноса на (-в/k) единиц вдоль оси абсцисс и путем сжатия в k раз (при k>1) или растяжения в k раз (при 0 1) или растяжения в k раз (при 0">





Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Графики тригонометрических функций Функция у = sin x, ее свойства Преобразование графиков тригонометрических функций путем параллельного переноса Преобразование графиков тригонометрических функций путем сжатия и расширения Для любознательных…

тригонометрические функции Графиком функции у = sin x является синусоида Свойства функции: D(y) =R Периодическая (Т=2 ) Нечетная (sin(-x)=-sin x) Нули функции: у=0, sin x=0 при х =  n, n  Z y=sin x

тригонометрические функции Свойства функции у = sin x 5. Промежутки знакопостоянства: У >0 при х   (0+2  n ;  +2  n) , n  Z У

тригонометрические функции Свойства функции у= sin x 6. Промежутки монотонности: функция возрастает на промежутках вида:  -  /2 +2  n ;  / 2+2  n   n  Z y = sin x

тригонометрические функции Свойства функции у= sin x Промежутки монотонности: функция убывает на промежутках вида:  /2 +2  n ; 3  / 2+2  n   n  Z y=sin x

тригонометрические функции Свойства функции у = sin x 7. Точки экстремума: Х мах =  / 2 +2  n , n  Z Х м in = -  / 2 +2  n , n  Z y=sin x

тригонометрические функции Свойства функции у = sin x 8 . Область значений: Е(у) =  -1;1  y = sin x

тригонометрические функции Преобразование графиков тригонометрических функций График функции у = f (x +в) получается из графика функции у = f(x) параллельным переносом на (-в) единиц вдоль оси абсцисс График функции у = f (x)+а получается из графика функции у = f(x) параллельным переносом на (а) единиц вдоль оси ординат

тригонометрические функции Преобразование графиков тригонометрических функций Постройте график Функции у = sin(x+  /4) вспомнить правила

тригонометрические функции Преобразование графиков тригонометрических функций y =sin (x+  /4) Постройте график функции: y=sin (x -  /6)

тригонометрические функции Преобразование графиков тригонометрических функций y = sin x +  Постройте график функции: y =sin (x -  /6)

тригонометрические функции Преобразование графиков тригонометрических функций y= sin x +  Постройте график функции: y=sin (x +  /2) вспомнить правила

тригонометрические функции Графиком функции у = cos x является косинусоида Перечислите свойства функции у = cos x sin(x+  /2)=cos x

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у = k f (x) получается из графика функции у = f(x) путем его растяжения в k раз (при k>1) вдоль оси ординат График функции у = k f (x) получается из графика функции у = f(x) путем его сжатия в k раз (при 0

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения y=sin2x y=sin4x Y=sin0.5x вспомнить правила

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у = f (kx) получается из графика функции у = f(x) путем его сжатия в k раз (при k>1) вдоль оси абсцисс График функции у = f (kx) получается из графика функции у = f(x) путем его растяжения в k раз (при 0

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения y = cos2x y = cos 0.5x вспомнить правила

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения Графики функций у = -f (kx) и у=- k f(x) получаются из графиков функций у = f(kx) и y= k f(x) соответственно путем их зеркального отображения относительно оси абсцисс синус – функция нечетная, поэтому sin(-kx) = - sin (kx) косинус –функция четная, значит cos(-kx) = cos(kx)

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения y = - sin3x y = sin3x вспомнить правила

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения y=2cosx y=-2cosx вспомнить правила

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения График функции у = f (kx+b) получается из графика функции у = f(x) путем его параллельного переноса на (-в /k) единиц вдоль оси абсцисс и путем сжатия в k раз (при k>1) или растяжения в k раз (при 0

тригонометрические функции Преобразование графиков тригонометрических функций путем сжатия и растяжения Y= cos(2x+  /3) y=cos(x+  /6) y= cos(2x+  /3) y= cos(2(x+  /6)) y= cos(2x+  /3) y= cos(2(x+  /6)) Y= cos(2x+  /3) y=cos2x вспомнить правила

тригонометрические функции Для любознательных… Посмотрите как выглядят графики некоторых других триг. функций: y = 1 / cos x или y=sec x (читается секонс) y = cosec x или y= 1/ sin x читается косеконс


По теме: методические разработки, презентации и конспекты

ЦОР «Преобразование графиков тригонометрических функций» 10-11 классы

Раздел учебной программы:«Тригонометрические функции».Тип урока:цифровой образовательный ресурс комбинированного урока алгебры. По форме изложения материала:Комбинированный (универсальный) ЦОР со...

Методическая разработка урока по математике:«Преобразование графиков тригонометрических функций»

Методическая разработка урока по математике: «Преобразование графиков тригонометрических функций» для учащихся десятого класса. Урок сопровождается презентацией....

Подготовила: Шунайлова М., ученица 11 «Д» Руководители: Крагель Т.П., Гремяченская Т.В.. 2006

Слайд 2

Тригонометрические функции острого угла есть отношения различных пар сторон прямоугольного треугольника 1) Синус -отношение противолежащего катета к гипотенузе: sin A = a / c . 2) Косинус - отношение прилежащего катета к гипотенузе: cos A = b / c . 3) Тангенс - отношение противолежащего катета к прилежащему: tg A = a / b . 4) Котангенс - отношение прилежащего катета к противолежащему: ctg A = b / a . 5) Секанс - отношение гипотенузы к прилежащему катету: sec A = c / b. 6) Косеканс - отношение гипотенузы к противолежащему катету: cosec A = = c / a . Аналогично записываются формулы для другого острого угла B

Слайд 3

П р и м е р: Прямоугольный треугольник ABC (рис.2) имеет катеты: a = 4, b = 3. Найти синус, косинус и тангенс угла A. Р е ш е н и е. Во-первых, найдём гипотенузу, используя теорему Пифагора: c 2 = a2+ b 2 , Согласно вышеприведенным формулам имеем: sin A = a / c = 4 / 5 cos A = b / c = 3 / 5 tg A = a / b = 4 / 3

Слайд 4

Для некоторых углов можно записать точные значения их тригонометрических функций. Наиболее важные случаи приведены в таблице: Углы 0° и 90°, не являются острыми в прямоугольном треугольнике, однако при расширении понятия тригонометрических функций эти углы также рассматриваются. Символ в таблице означает, что абсолютное значение функции неограниченно возрастает, если угол приближается к указанному значению.

Слайд 5

Связь тригонометрических функций острого угла

  • Слайд 6

    Тригонометрические функции двойного угла:

    sin 2x = 2sinx cosx cos 2x = cos2x -sin2x tg 2x = 2tg x /(1-tg2x) ctg 2x = ctg2x-1/(2 ctg x)

    Слайд 7

    Тригонометрические функции половинного угла

    Часто бывают полезны формулы, выражающие степени sin и cos простого аргумента через sin и cos кратного, например: Формулы для cos2x и sin2x можно использовать для нахождения значений Т. ф. половинного аргумента

    Слайд 8

    Тригонометрические функции суммы углов

    sin(x+y)= sin x cos y + cos x sin y sin(x-y)= sin x cos y - cos x sin y cos(x+y)= cos x cos y - sin x sin y cos(x-y)= cos x cos y + sin x sin y

    Слайд 9

    Для больших значений аргумента можно пользоваться так называемыми формулами приведения, которые позволяют выразить Т. ф. любого аргумента через Т. ф. аргумента x, что упрощает составление таблиц Т. ф. и пользование ими, а также построение графиков. Эти формулы имеют вид: в первых трёх формулах n может быть любым целым числом, причём верхний знак соответствует значению n = 2k, а нижний - значению n = 2k + 1; в последних - n может быть только нечётным числом, причём верхний знак берётся при n = 4k + 1, а нижний при n = 4k - 1.

    Слайд 10

    Важнейшими тригонометрическими формулами являются формулы сложения, выражающие Т. ф. суммы или разности значений аргумента через Т. ф. этих значений: знаки в левой и правой частях всех формул согласованы, то есть верхнему (нижнему) знаку слева соответствует верхний (нижний) знак справа. Из них, в частности, получаются формулы для Т. ф. кратных аргументов, например:

    Слайд 11

    Производные всех Тригонометрических функций выражаются через Тригонометрические функции

    Слайд 12

    График функции y = sinx имеет вид:

  • Слайд 13

    График функции y = cosx имеет вид:

  • Слайд 14

    График функции y = tgx имеет вид:

  • Слайд 15

    График функции y = ctgx имеет вид:

  • Слайд 16

    История возникновения тригонометрических функций

    Т. ф. возникли впервые в связи с исследованиями в астрономии и геометрии. Соотношения отрезков в треугольнике и окружности, являющиеся по существу Т. ф., встречаются уже в 3 в. до н. э. в работах математиков Древней Греции - Евклида, Архимеда, Аполлония Пергского и др. Однако эти соотношения не являются у них самостоятельным объектом исследования, так что Т. ф. как таковые ими не изучались. Т. ф. рассматривались первоначально как отрезки и в такой форме применялись Аристархом (конец 4 - 2-я половина 3 вв. до н. э.)

    Слайд 17

    Гиппархом (2 в. до н. э.), Менелаем (1 в. н. э.) и Птолемеем (2 в. н. э.) при решении сферических треугольников. Птолемей составил первую таблицу хорд для острых углов через 30" с точностью до 10-6. Разложение Т. ф. в степенные ряды получено И. Ньютоном (1669). В современную форму теорию Т. ф. привёл Л. Эйлер (18 в.). Ему принадлежат определение Т. ф. для действительного и комплексного аргументов, принятая ныне символика, установление связи с показательной функцией, ортогональности системы синусов и косинусов

    Посмотреть все слайды

  • Понравилась статья? Поделитесь с друзьями!
    Была ли эта статья полезной?
    Да
    Нет
    Спасибо, за Ваш отзыв!
    Что-то пошло не так и Ваш голос не был учтен.
    Спасибо. Ваше сообщение отправлено
    Нашли в тексте ошибку?
    Выделите её, нажмите Ctrl + Enter и мы всё исправим!