Мода и стиль. Красота и здоровье. Дом. Он и ты

Функции атмосферы земли кратко. Движение воздушных масс в атмосфере

Толщина атмосферы - примерно 120 км от поверхности Земли. Суммарная масса воздуха в атмосфере - (5,1-5,3)·10 18 кг. Из них масса сухого воздуха составляет 5,1352 ±0,0003·10 18 кг, общая масса водяных паров в среднем равна 1,27·10 16 кг.

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 ° (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой .

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Атмосфера Земли

Граница атмосферы Земли

Термосфера

Верхний предел - около 800 км. Температура растёт до высот 200-300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния ») - основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца . В периоды низкой активности - например, в 2008-2009 гг - происходит заметное уменьшение размеров этого слоя .

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум , который заполнен сильно разрежёнными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разрежённых пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу . Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера . Граница между этими слоями называется турбопаузой , она лежит на высоте около 120 км.

Физиологические и другие свойства атмосферы

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 9 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В разреженных слоях воздуха распространение звука оказывается невозможным. До высот 60-90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100-130 км знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл: там проходит условная линия Кармана , за которой начинается область чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства - способности поглощать, проводить и передавать тепловую энергию путём конвекции (т. е. с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, - с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение .

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера (около четырех миллиардов лет назад). На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком , водяным паром). Так образовалась вторичная атмосфера (около трех миллиардов лет до наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • утечка легких газов (водорода и гелия) в межпланетное пространство ;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы , характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества азота N 2 обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N 2 выделяется в атмосферу в результате денитрификации нитратов и других азотсодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N 2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, т. н. сидератами.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов , в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений - аммиака, углеводородов, закисной формы железа , содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере , литосфере и биосфере , это событие получило название Кислородная катастрофа .

Благородные газы

Загрязнение атмосферы

В последнее время на эволюцию атмосферы стал оказывать влияние человек . Результатом его деятельности стал постоянный значительный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО 2 потребляются при фотосинтезе и поглощаются мировым океаном. Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО 2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 200-300 лет количество СО 2 в атмосфере удвоится и может привести к глобальным изменениям климата .

Сжигание топлива - основной источник и загрязняющих газов (СО , , SO 2). Диоксид серы окисляется кислородом воздуха до SO 3 в верхних слоях атмосферы, который в свою очередь взаимодействует с парами воды и аммиака, а образующиеся при этом серная кислота (Н 2 SO 4) и сульфат аммония ((NH 4) 2 SO 4) возвращаются на поверхность Земли в виде т. н. кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец Pb(CH 3 CH 2) 4)).

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капель морской воды и пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу - одна из возможных причин изменений климата планеты.

См. также

  • Jacchia (модель атмосферы)

Примечания

Ссылки

Литература

  1. В. В. Парин, Ф. П. Космолинский, Б. А. Душков «Космическая биология и медицина» (издание 2-е, переработанное и дополненное), М.: «Просвещение», 1975, 223 стр.
  2. Н. В. Гусакова «Химия окружающей среды», Ростов-на-Дону: Феникс, 2004, 192 с ISBN 5-222-05386-5
  3. Соколов В. А. Геохимия природных газов, М., 1971;
  4. МакИвен М., Филлипс Л. Химия атмосферы, М., 1978;
  5. Уорк K., Уорнер С. Загрязнение воздуха. Источники и контроль, пер. с англ., М.. 1980;
  6. Мониторинг фонового загрязнения природных сред. в. 1, Л., 1982.

Атмосфера (от. греч. ατμός - «пар» и σφαῖρα - «сфера») - газовая оболочка небесного тела, удерживаемая около него гравитацией. Атмосфера - газообразная оболочка планеты, состоящая из смеси различных газов, водных паров и пыли. Через атмосферу осуществляется обмен вещества Земли с Космосом. Земля получает космическую пыль и метеоритный материал, теряет самые легкие газы: водород и гелий. Атмосфера Земли насквозь пронизывается мощной радиацией Солнца, определяющей тепловой режим поверхности планеты, вызывающей диссоциацию молекул атмосферных газов и ионизацию атомов.

Атмосфера Земли содержит кислород, используемый большинством живых организмов для дыхания, и диоксид углерода, потребляемый растениями, водорослями и цианобактериями в процессе фотосинтеза. Атмосфера также является защитным слоем планеты, защищая её обитателей от солнечного ультрафиолетового излучения.

Атмосфера есть у всех массивных тел - планет земного типа, газовых гигантов.

Состав атмосферы

Атмосфера - это смесь газов, состоящая из азота (78,08 %), кислорода (20,95 %), углекислого газа (0,03 %), аргона (0,93 %), небольшого количества гелия, неона, ксенона, криптона (0,01 %), 0,038 % двуокиси углерода, и небольшое количество водорода, гелия, других благородных газов и загрязнителей.

Современный состав воздуха Земли установился более сотни миллионов лет назад, однако резко возросшая производственная деятельность человека все же привела к его изменению. В настоящее время отмечается увеличение содержания СО 2 примерно на 10-12 %.Входящие в состав атмосферы газы выполняют различные функциональные роли. Однако основное значение этих газов определяется прежде всего тем, что они очень сильно поглощают лучистую энергию и тем самым оказывают существенное влияние на температурный режим поверхности Земли и атмосферы.

Начальный состав атмосферы планеты обычно зависит от химических и температурных свойств солнца в период формирования планет и последующего выхода внешних газов. Затем состав газовой оболочки эволюционирует под действием различных факторов.

Атмосфера Венеры и Марса в основном состоят из двуокиси углерода с небольшими добавлениями азота, аргона, кислорода и других газов. Земная атмосфера в большой степени является продуктом живущих в ней организмов. Низкотемпературные газовые гиганты - Юпитер, Сатурн, Уран и Нептун - могут удерживать в основном газы с низкой молекулярной массой - водород и гелий. Высокотемпературные газовые гиганты, такие как Осирис или 51 Пегаса b, наоборот, не могут её удержать и молекулы их атмосферы рассеиваются в пространстве. Этот процесс протекает медленно, постоянно.

Азот, самый распространенный газ в атмосфере, химически мало активен.

Кислород , в отличие от азота, химически очень активный элемент. Специфическая функция кислорода - окисление органического вещества гетеротрофных организмов, горных пород и недоокисленных газов, выбрасываемых в атмосферу вулканами. Без кислорода не было бы разложения мертвого органического вещества.

Структура атмосферы

Структура атмосферы складывается из двух частей: внутренней- тропосферы, стратосферы, мезосферы и термосферы, или ионосферы, и внешней - магнитосферы (экзосферы).

1)Тропосфера – это нижняя часть атмосферы, в которой сосредоточено 3\4 т.е. ~ 80% всей земной атмосферы. Её высота определяется интенсивностью вертикальных (восходящих или нисходящих) потоков воздуха, вызванных нагреванием земной поверхности и океана, поэтому толщина тропосферы на экваторе составляет 16 – 18 км, в умеренных широтах 10-11 км, а на полюсах – до 8 км. Температура воздуха в тропосфере на высоте понижается на 0,6ºС на каждые 100м и колеблется от +40 до - 50ºС.

2)Стратосфера находится выше тропосферы и имеет высоту до 50км от поверхности планеты. Температура на высоте до 30км постоянная -50ºС. Затем она начинает повышаться и на высоте 50 км достигает +10ºС.

Верхней границей биосферы являются озоновый экран.

Озоновый экран – это слой атмосферы в пределах стратосферы, расположенный на разной высоте от поверхности Земли и имеющей максимальную плотность озона на высоте 20-26 км.

Высота озонового слоя у полюсов оценивается в 7 - 8 км, у экватора в 17-18км, а максимальная высота присутствия озона – 45-50 км. Выше озонового экрана жизнь невозможна из-за жёсткого ультрафиолетового излучения Солнца. Если спрессовать все молекулы озона, то получится слой ~ 3мм вокруг планеты.

3)Мезосфера – верхняя граница этого слоя располагается до высоты 80км. Главная её особенность – резкое понижение температуры -90ºС у её верхней границы. Здесь фиксируется серебристые облака, состоящие из ледяных кристаллов.

4)Ионосфера (термосфера)- располагается до высоты 800 км и для неё характерно значительное повышение температуры:

150км температура +240ºС,

200км температура +500ºС,

600км температура +1500ºС.

Под действием ультрафиолетового излучения Солнца газы находятся в ионизированном состоянии. С ионизацией связано свечение газов и возникновение полярных сияний.

Ионосфера обладает способностью многократного отражения радиоволн, что обеспечивает дальнюю радиосвязь на планете.

5)Экзосфера – располагается выше 800км и простирается до 3000км. Здесь температура >2000ºС. Скорость движения газов приближается к критической ~ 11,2 км/сек. Господствуют атомы водорода и гелия, которые образуют вокруг Земли светящуюся корону, простирающуюся до высоты 20000км.

Функций атмосферы

1) Терморегулирующая – погода и климат на Земле зависит от распределения тепла, давления.

2) Жизнеобеспечивающая.

3) В тропосфере происходит глобальные вертикальные и горизонтальные перемещения воздушных масс определяющий круговорот воды, теплообмен.

4) Практически все поверхности геологические процессы обусловлены взаимодействием атмосферы, литосферы и гидросферы.

5) Защитная – атмосфера защищает землю от космоса, солнечной радиации и метеоритной пыли.

Функции атмосферы . Без атмосферы жизнь на Земле была бы невозможна. Человек ежедневно потребляет 12-15 кг. воздуха, вдыхая каждую минуту от 5 до 100л, что значительно превосходит среднесуточную потребность в пище и воде. Кроме того, атмосфера надежно оберегает человека от опасностей, угрожающих ему из космоса: не пропускает метеориты, космические излучения. Без пищи человек может прожить пять недель, без воды - пять дней, без воздуха - пять минут. Нормальная жизнедеятельность людей требует не только воздуха, но и определенной его чистоты. От качества воздуха воздуха зависят здоровье людей, состояние растительного и животного мира, прочность и долговечность конструкций зданий, сооружений. Загрязненный воздух губителен для вод, суши, морей, почв. Атмосфера определяет световой и регулирует тепловой режимы земли, способствует перераспределению тепла на земном шаре. Газовая оболочка предохраняет Землю от чрезмерного остывания и нагревания. Если бы наша планета не была бы окружена воздушной оболочкой, то в течение одних суток амплитуда колебаний температуры достигла бы 200 С. Атмосфера спасает все живущее на Земле от губительных ультрафиолетовых, рентгеновских и космических лучей. Велико значение атмосферы в распределении света. Ее воздух разбивает солнечные лучи на миллион мелких лучей, рассеивает их и создает равномерное освещение. Атмосфера служит проводником звуков.

Космос наполнен энергией. Энергия наполняет пространство неравномерно. Есть места её концентрации и разряжения. Так можно оценить плотность. Планета – упорядоченная система, с максимальной плотностью вещества в центре и с постепенным уменьшением концентрации к периферии. Силы взаимодействия определяют состояние материи, форму, в которой она существует. Физика описывает агрегатное состояние веществ: твердое тело, жидкость, газ и так далее.

Атмосфера - это газовая среда окружающая планету. Атмосфера Земли обеспечивает свободное перемещение и пропускает свет, формирует простор, в котором процветает жизнь.


Участок от поверхности земли до высоты приблизительно 16 километров (от экватора к полюсам меньшее значение, также зависит от сезона) называют тропосферой. Тропосфера слой, в котором сосредоточено около 80% всего воздуха атмосферы и почти весь водяной пар. Именно здесь протекают процессы формирующие погоду. Давление и температура падают с высотой. Причиной понижения температуры воздуха является адиабатический процесс, при расширении газ охлаждается. У верхней границы тропосферы значения могут достигать -50, -60 градусов Цельсия.

Далее начинается Стратосфера. Она распространяется вверх на 50 километров. В этом слое атмосферы температура с высотой увеличивается, приобретая значение в верхней точке около 0 С. Повышение температуры вызвано процессом поглощения озоновым слоем ультрафиолетовых лучей. Излучение вызывает химическую реакцию. Молекулы кислорода распадаются на одиночные атомы, которые могут объединяться с нормальными молекулами кислорода, в итоге появляется озон.

Излучение солнца с длинами волн от 10 до 400 нанометров классифицируется как ультрафиолетовое. Чем короче длина волны УФ излучения, тем большую опасность оно представляет для живых организмов. Только малая доля излучения доходит до поверхности Земли, к тому же менее активная часть её спектра. Такая особенность природы, позволяет человеку получать здоровый солнечный загар.

Следующий слой атмосферы называется Мезосфера. Пределы приблизительно с 50 км до 85 км. В мезосфере концентрация озона, который бы мог задерживать УФ энергию низкая, поэтому температура снова начинает падать с высотой. В пиковой точке температура опускается до -90 С, некоторые источники указывают величину -130 С. В этом слое атмосферы сгорает большинство метеорных тел.

Слой атмосферы, растянувшийся с высоты 85 км на расстояние 600 км от Земли, называется Термосфера. Термосфера первой встречает солнечное излучение, в том числе, так называемый вакуумный ультрафиолет.

Вакуумный УФ задерживается воздушной средой, тем самым нагревает этот слой атмосферы до огромных температур. Однако поскольку давление здесь крайне мало, этот, казалось бы, раскаленный газ не оказывает на объекты такого воздействия как при условиях на поверхности земли. Наоборот предметы, помещенные в такую среду, будут остывать.

На высоте 100 км проходит условная черта «линия Кармана», которую принято считать началом космоса.

В термосфере происходят полярные сияния. В этом слое атмосферы солнечный ветер взаимодействует с магнитным полем планеты.

Последним слоем атмосферы является Экзосфера, внешняя оболочка, простирающаяся на тысячи километров. Экзосфера практически пустое место, тем не менее, количество атомов блуждающих здесь на порядок больше чем в межпланетном пространстве.

Человек дышит воздухом. Нормальное давление – 760 миллиметров ртутного столба. На высоте 10 000 м давление составляет около 200 мм. рт. ст. На такой высоте человек вероятно может дышать, хотя бы не продолжительное время, но для этого нужна подготовка. Состояние явно будет неработоспособное.

Газовый состав атмосферы: 78 % азот, 21 % кислород, около процента аргон всё остальное – смесь газов представляющих мельчайшую долю от общего количества.


Атмосфера Земли представляет собой газовую оболочку нашей планеты. Ее нижняя граница проходит на уровне земной коры и гидросферы, а верхняя переходит в околоземную область космического пространства. Атмосфера содержит около 78% азота, 20% кислорода, до 1% аргона, углекислого газа, водорода, гелия, неона и некоторых других газов.

Данная земная оболочка характеризуется четко выраженной слоистостью. Слои атмосферы определяются вертикальным распределением температуры и различной плотностью газов на разных ее уровнях. Различают такие слои атмосферы Земли: тропосфера, стратосфера, мезосфера, термосфера, экзосфера. Отдельно выделяют ионосферу.

До 80% всей массы атмосферы составляет тропосфера – нижний приземный слой атмосферы. Тропосфера в полярных поясах расположена на уровне до 8-10 км над земной поверхностью, в тропическом поясе - максимально до 16-18 км. Между тропосферой и вышележащим слоем стратосферой находится тропопауза – переходный слой. В тропосфере температура снижается по мере увеличения высоты, аналогично с высотой уменьшается атмосферное давление. Средний градиент температуры в тропосфере составляет 0,6°С на 100 м. Температура на разных уровнях данной оболочки определяется особенностями поглощения солнечного излучения и эффективностью конвекции. Почти вся деятельность человека осуществляется в тропосфере. Самые высокие горы не выходят за пределы тропосферы, только воздушный транспорт может пересекать на небольшую высоту верхнюю границу данной оболочки и находиться в стратосфере. Большая доля водяного пара содержится в тропосфере, что обусловливает формирование почти всех облаков. Также в тропосфере сконцентрированы практически все аэрозоли (пыль, дым, т.д.), образующиеся на земной поверхности. В пограничном нижнем слое тропосферы выражены суточные колебания температуры, влажности воздуха, скорость ветра обычно снижена (она возрастает с повышением высоты). В тропосфере наблюдается изменчивое расчленение толщи воздуха на воздушные массы в горизонтальном направлении, отличающиеся по ряду характеристик в зависимости от пояса и местности их формирования. На атмосферных фронтах – границах между воздушными массами – образуются циклоны и антициклоны, определяющие погоду на определенной территории в течение конкретного промежутка времени.

Стратосфера является слоем атмосферы между тропосферой и мезосферой. Пределы данного слоя составляют от 8-16 км до 50-55 км над поверхностью Земли. В стратосфере газовый состав воздуха приблизительно таков же, как и в тропосфере. Отличительная особенность – уменьшение концентрации водяного пара и повышение содержания озона. Озоновый слой атмосферы, защищающий биосферу от агрессивного воздействия ультрафиолетового света, находится на уровне от 20 до 30 км. В стратосфере температура повышается с высотой, причем температурные значение определяются солнечным излучением, а не конвекцией (передвижениями воздушных масс), как в тропосфере. Нагревание воздуха стратосферы обусловлено поглощением ультрафиолетового излучения озоном.

Над стратосферой простирается мезосфера до уровня 80 км. Этот слой атмосферы характеризуется тем, что температура по мере увеличения высоты понижается от 0° С до - 90° С. Это наиболее холодная область атмосферы.

Выше мезосферы находится термосфера до уровня 500 км. От границы с мезосферой до экзосферы температура меняется примерно от 200 К до 2000 К. До уровня 500 км плотность воздуха убывает в несколько сот тысяч раз. Относительный состав атмосферных составляющих термосферы аналогичен приземному слою тропосферы, но с увеличением высоты большее количество кислорода переходит в атомарное состояние. Определенная доля молекул и атомов термосферы находится в ионизированном состоянии и распределены в нескольких слоях, они объединяются понятием ионосфера. Характеристики термосферы варьируют в большом диапазоне в зависимости от географической широты, величины солнечной радиации, времени года и суток.

Верхний слой атмосферы – экзосфера. Это самый разреженный слой атмосферы. В экзосфере длины свободного пробега частиц настолько огромны, что частицы могут свободно удаляться в межпланетное пространство. Масса экзосферы составляет одну десятимиллионную от общей массы атмосферы. Нижняя граница экзосферы – уровень 450-800 км, а верхней границей считается область, где концентрация частиц такая же, как в космическом пространстве, - несколько тысяч километров от поверхности Земли. Экзосфера состоит из плазмы – ионизированного газа. Также в экзосфере находятся радиационные пояса нашей планеты.

Видео презентация - слои атмосферы Земли:

Похожие материалы:

Воздушная оболочка, которая окружает нашу планету и вращается вместе с ней, называется атмосферой. Половина всей массы атмосферы сосредоточена в нижних 5 км, а три четверти массы - в нижних 10 км. Выше воздух значительно разрежен, хотя его частицы обнаруживаются на высоте 2000-3000 км над земной поверхностью.

Воздух, которым мы дышим, это смесь газов. Больше всего в нём азота - 78% и кислорода - 21 %. Аргон составляет менее 1 % и 0,03% - углекислый газ. Другие многочисленные газы, например криптон, ксенон, неон, гелий, водород, озон и прочие, составляют тысячные и миллионные доли процента. Воздух содержит также водяной пар, частички различных веществ, бактерии, пыльцу и космическую пыль.

Атмосфера состоит из нескольких слоев. Нижний слой до высоты 10-15 км над поверхностью Земли называется тропосфера. Она нагревается от Земли, поэтому температура воздуха здесь с высотой падает на 6 °С на 1 километр подъёма. В тропосфере находится почти весь водяной пар и образуются практически все облака - прим.. Высота тропосферы над разными широтами планеты неодинакова. Над полюсами она поднимается до 9 км, над умеренными широтами - до 10-12 км, а над экватором - до 15 км. Процессы, происходящие в тропосфере - формирование и перемещение воздушных масс, образование циклонов и антициклонов, появление облаков и выпадение осадков, - определяют погоду и климат у земной поверхности.


Выше тропосферы располагается стратосфера, которая простирается до 50-55 км. Тропосферу и стратосферу разделяет переходный слой тропопауза, толщиной 1-2 км. В стратосфере на высоте около 25 км температура воздуха постепенно начинает расти и на 50 км достигает + 10 +30 °С. Такое повышение температуры связано с тем, что в стратосфере на высотах 25-30 км находится слой озона. У поверхности Земли его содержание в воздухе ничтожно мало, а на больших высотах двухатомные молекулы кислорода поглощают ультрафиолетовую солнечную радиацию, образуя трёхатомные молекулы озона.

Если бы озон располагался в нижних слоях атмосферы, на высоте с нормальным давлением, толщина его слоя была бы всего 3 мм. Но и в таком небольшом количестве он играет очень важную роль: поглощает вредную для живых организмов часть солнечного излучения.

Выше стратосферы примерно до высоты 80 км простирается мезосфера, в которой температура воздуха с высотой падает до нескольких десятков градусов ниже нуля.

Верхняя часть атмосферы характеризуется очень высокими температурами и называется термосферой - прим.. Её разделяют на две части - ионосферу - до высоты около 1000 км, где воздух сильно ионизован, и экзосферу - свыше 1000 км. В ионосфере молекулы атмосферных газов поглощают ультрафиолетовую радиацию Солнца, при этом образуются заряженные атомы и свободные электроны. В ионосфере наблюдаются полярные сияния.

Атмосфера играет очень важную роль в жизни нашей планеты. Она предохраняет Землю от сильного нагрева солнечными лучами днём и от переохлаждения ночью. Большая часть метеоритов сгорает в атмосферных слоях, не долетая до поверхности планеты. Атмосфера содержит кислород, необходимый всем организмам, озоновый экран, защищающий жизнь на Земле от губительной части ультрафиолетовой радиации Солнца.


АТМОСФЕРЫ ПЛАНЕТ СОЛНЕЧНОЙ СИСТЕМЫ

Атмосфера Меркурия так сильно разрежена, что, можно сказать, её практически нет. Воздушная оболочка Венеры состоит из углекислого газа (96%) и азота (около 4%), она очень плотная - атмосферное давление у поверхности планеты почти в 100 раз больше, чем на Земле. Марсианская атмосфера тоже состоит преимущественно из углекислого газа (95%) и азота (2,7%), но её плотность меньше земной примерно в 300 раз, а давление - почти в 100 раз. Видимая поверхность Юпитера на самом деле представляет собой верхний слой водородно-гелиевой атмосферы. Такие же по составу воздушные оболочки Сатурна и Урана. Красивый голубой цвет Урана обусловлен высокой концентрацией метана в верхней части его атмосферы - прим.. У Нептуна, окутанного углеводородной дымкой, выделяют два основных слоя облаков: один состоит из кристаллов замёрзшего метана, а второй, расположенный ниже, содержит аммиак и сероводород.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!