Мода и стиль. Красота и здоровье. Дом. Он и ты

Физический смысл волновой функции электрона. Волновая функция и ее статистический смысл

Как известно, основная задача классической механики заключается в определении положения макрообъекта в любой момент времени. Для этого составляется система уравнений, решение которой позволяет выяснить зависимость радиус-вектора от времени t . В классической механике состояние частицы при ее движении в каждый момент задается двумя величинами: радиус-вектором и импульсом . Таким образом, классическое описание движения частицы правомерно, если оно происходит в области с характерным размером, много большим, чем длина волны де Бройля . В противном случае (например, вблизи ядра атома) следует принимать во внимание волновые свойства микрочастиц. Об ограниченной применимости классического описания микрообъектов, имеющих волновые свойства, и говорят соотношения неопределенностей.

С учетом наличия у микрочастицы волновых свойств ее состояние в квантовой механике задается с помощью некоторой функции координат и времени (x, y, z, t ) , называемой волновой или - функцией . В квантовой физике вводится комплексная функция, описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространенной интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности).

Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения решения в частных физических задачах. Таким уравнением является уравнение Шрёдингера .

Теория, описывающая движение малых частиц с учетом их волновых свойств, называется квантовой , или волновой механикой . Многие положения этой теории кажутся странными и непривычными с точки зрения представлений, сложившихся при изучении классической физики. Следует всегда помнить, что критерием правильности теории, какой бы странной она не казалась поначалу, является совпадение ее следствий с опытными данными. Квантовая же механика в своей области (строение и свойства атомов, молекул и отчасти атомных ядер) прекрасно подтверждается опытом.

Волновая функция описывает состояние частицы во всех точках пространства и для любого момента времени. Для понимания физического смысла волновой функции обратимся к опытам по дифракции электронов. (Опыты Томсона и Тартаковского по пропусканию электронов через тонкую металлическую фольгу). Оказывается, что четкие дифракционные картины обнаруживаются даже в том случае, если направлять на мишень одиночные электроны, т.е. когда каждый последующий электрон испускается после того, как предыдущий достигнет экрана. После достаточной продолжительной бомбардировки картина на экране будет в точности соответствовать той, которая получается при одновременном направлении на мишень большого числа электронов.


Из этого можно сделать вывод о том, движение любой микрочастицы по отдельности, в том числе и место ее обнаружения, подчиняется статистическим (вероятностным) закономерностям, и при направлении на мишень одиночного электрона точку на экране, в которой он будет зафиксирован, заранее со 100%-й уверенностью предсказать невозможно.

В дифракционных опытах Томсона на фотопластинке образовывалась система темных концентрических колец. Можно с уверенностью сказать, что вероятность обнаружения (попадания) каждого испущенного электрона в различных местах фотопластинки неодинакова. В области темных концентрических колец эта вероятность больше, чем в остальных местах экрана. Распределение электронов по всему экрану оказывается таким же, каким является распределение интенсивности электромагнитной волны в аналогичном дифракционном опыте: там, где интенсивность рентгеновской волны велика, частиц в опыте Томсона регистрируется много, а там, где интенсивность мала - частицы почти не появляются.

С волновой точки зрения наличие максимума числа электронов в некоторых направлениях означает, что эти направления соответствуют наибольшей интенсивности волны де Бройля. Это послужило основанием для статистического (вероятностного) истолкования волны де Бройля . Волновая функция как раз и является математическим выражением, которое позволяет описать распространение какой-либо волны в пространстве. В частности, вероятность найти частицу в данной области пространства пропорциональна квадрату амплитуды волны, связанной с частицей.

Для одномерного движения (например, в направлении оси Ox ) вероятность dP обнаружения частицы в промежутке между точками x и x + dx в момент времени t равна

dP = , (6.1)

где | (x,t )| 2 = (x,t ) *(x,t ) - квадрат модуля волновой функции (значок * обозначает комплексное сопряжение).

В общем случае при движении частицы в трехмерном пространстве вероятность dP обнаружения частицы в точке с координатами (x,y,z) в пределах бесконечно малого объема dV задается аналогичным уравнением: dP = | (x,y,z,t) | 2 dV . Впервые вероятностную интерпретацию волновой функции дал Борн в 1926г.

Вероятность обнаружить частицу во всем бесконечном пространстве равна единице. Отсюда следует условие нормировки волновой функции:

. (6.2)

Величина является плотностью вероятности , или, что то же самое, плотностью распределение координат частиц. В простейшем случае одномерного движения частицы вдоль оси ОX среднее значение ее координаты вычисляется следующим соотношением:

<x(t )>= . (6.3)

Чтобы волновая функция являлась объективной характеристикой состояния микрочастицы, она должна удовлетворять ряду ограничительных условий. Функция Ψ, характеризующая вероятность обнаружения микрочастицы в элементе объема, должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной), непрерывной (вероятность не может меняться скачком) и гладкой (без изломов) во всем пространстве.

Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями Ψ1, Ψ2 , Ψn , то она может находиться в состоянии, описываемом линейной комбинацией этих функций:

, (6.4)

где Cn (n = 1, 2, 3) - произвольные, вообще говоря, комплексные числа.

Сложение волновых функций (амплитуд вероятностей, определяемых квадратами модулей волновых функций) принципиально отличает квантовуютеорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей.

Волновая функция Ψ является основной характеристикой состояниямикрообъектов.

Например, среднее расстояние <r > электрона отядра вычисляется по формуле:

,

где вычисления проводятся, как и в случае (6.3). Таким образом, точно предсказать в дифракционных опытах, в каком месте экрана будет зафиксирован тот или иной электрон, невозможно, даже заранее зная его волновую функцию. Можно лишь с определенной вероятностью предположить, что электрон будет зафиксирован в определенном месте. В этом отличие поведения квантовых объектов от классических. В классической механике при описании движения макротел мы со 100%-й вероятностью знали заранее, в каком месте пространства будет находиться материальная точка (например, космическая станция) в любой момент времени.

Де Бройль использовал представление о фазовых волнах (волнах вещества или волнах де Бройля) для наглядного толкования правила квантования орбит электрона в атоме по Бору в случае одноэлектронного атома. Он рассмотрел фазовую волну, бегущую вокруг ядра по круговой орбите электрона. Если на длине орбиты укладывается целое число этих волн , то волна при обходе вокруг ядра будет всякий раз возвращаться в исходную точку с той же фазой и амплитудой. В этом случае орбита становится стационарной и не возникает излучения. Де Бройль записал условие стационарности орбиты или правило квантования в виде:

где R - радиус круговой орбиты, п - целое число (главное квантовое число). Полагая здесь и учитывая, что L = RP есть момент импульса электрона, получим:

что совпадает с правилом квантования орбит электрона в атоме водорода по Бору.

В дальнейшем условие (6.5) удалось обобщить и на случай эллиптических орбит, когда длина волны меняется вдоль траектории электрона. Однако, в рассуждениях де Бройля предполагалось, что волна распространяется не в пространстве, а вдоль линии - вдоль стационарной орбиты электрона. Этим приближением можно пользоваться в предельном случае, когда длина волны пренебрежимо мала по сравнению с радиусом орбиты электрона.

> Волновая функция

Читайте о волновой функции и теории вероятностей квантовой механики: суть уравнения Шредингера, состояние квантовой частицы, гармонический осциллятор, схема.

Речь идет об амплитуде вероятности в квантовой механике, описывающей квантовое состояние частицы и ее поведение.

Задача обучения

  • Объединить волновую функцию и плотность вероятности определения частички.

Основные пункты

  • |ψ| 2 (x) соответствует плотности вероятности определения частички в конкретном месте и моменте.
  • Законы квантовой механики характеризуют эволюцию волновой функции. Уравнение Шредингера объясняет ее наименование.
  • Волновая функция должна удовлетворять множество математических ограничений для вычислений и физической интерпретации.

Термины

  • Уравнение Шредингера – частичный дифференциал, характеризующий изменение состояния физической системы. Его сформулировал в 1925 году Эрвин Шредингер.
  • Гармонический осциллятор – система, которая при смещении от изначальной позиции, испытывает влияние силы F, пропорциональной смещению х.

В пределах квантовой механики волновая функция отображает амплитуду вероятности, характеризующую квантовое состояние частички и ее поведение. Обычно значение – комплексное число. Наиболее распространенными символами волновой функции выступают ψ (x) или Ψ(x). Хотя ψ – комплексное число, |ψ| 2 – вещественное и соответствует плотности вероятности нахождения частицы в конкретном месте и времени.

Здесь отображены траектории гармонического осциллятора в классической (А-В) и квантовой (C- H) механиках. В квантовой шар обладает волновой функцией, отображенной с реальной частью в синем и мнимой в красном. Траектории C- F – примеры стоячих волн. Каждая такая частота будет пропорциональной возможному уровню энергии осциллятора

Законы квантовой механики эволюционируют со временем. Волновая функция напоминает другие, вроде волн в воде или струне. Дело в том, что формула Шредингера выступает типом волнового уравнения в математике. Это приводит к двойственности волновых частиц.

Волновая функция обязана соответствовать ограничениям:

  • всегда конечная.
  • всегда непрерывная и непрерывно дифференцируемая.
  • удовлетворяет соответствующее условие нормировки, чтобы частичка существовала со 100% определенностью.

Если требования не удовлетворены, то волновую функцию нельзя интерпретировать в качестве амплитуды вероятности. Если мы проигнорируем эти позиции и воспользуемся волновой функцией, чтобы определить наблюдения квантовой системы, то не получим конечных и определенных значений.

(1 оценок, среднее: 5,00 из 5)

Вовсе не двоечник Ранее бытовал миф, что Эйнштейн получал двойки и чуть ли не был отстающим. Эта идея особенно часто используется некотор...

Космический корабль готовится выстрелить в астероид Нет, это не операция по уничтожению или спасению Земли. Японский зонд действительно планирует ещ...

ВОЛНОВАЯ ФУНКЦИЯ, в КВАНТОВОЙ МЕХАНИКЕ функция, позволяющая найти вероятность того, что квантовая система находится в некотором состоянии s в момент времени t. Обычно пишется: (s) или (s, t). Волновая функция используется в уравнении ШРЕДИНГЕРА … Научно-технический энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ Современная энциклопедия

Волновая функция - ВОЛНОВАЯ ФУНКЦИЯ, в квантовой механике основная величина (в общем случае комплексная), описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих эту систему физических величин. Квадрат модуля волновой… … Иллюстрированный энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ - (вектор состояния) в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих ее физических величин. Квадрат модуля волновой функции равен вероятности данного… … Большой Энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ - в квантовой механике (амплитуда вероятности, вектор состояния), величина, полностью описывающая состояние микрообъекта (эл на, протона, атома, молекулы) и вообще любой квант. системы. Описание состояния микрообъекта с помощью В. ф. имеет… … Физическая энциклопедия

волновая функция - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN wave function … Справочник технического переводчика

волновая функция - (амплитуда вероятности, вектор состояния), в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих её физических величин. Квадрат модуля волновой функции равен… … Энциклопедический словарь

волновая функция - banginė funkcija statusas T sritis fizika atitikmenys: angl. wave function vok. Wellenfunktion, f rus. волновая функция, f; волнообразная функция, f pranc. fonction d’onde, f … Fizikos terminų žodynas

волновая функция - banginė funkcija statusas T sritis chemija apibrėžtis Dydis, apibūdinantis mikrodalelių ar jų sistemų fizikinę būseną. atitikmenys: angl. wave function rus. волновая функция … Chemijos terminų aiškinamasis žodynas

ВОЛНОВАЯ ФУНКЦИЯ - комплексная функция, описывающая состояние квантовомех. системы и позволяющая находить вероятности и ср. значения характеризуемых ею физ. величин. Квадрат модуля В. ф. равен вероятности данного состояния, поэтому В.ф. наз. также амплитудой… … Естествознание. Энциклопедический словарь

Книги

  • , Б. К. Новосадов. Монография посвящена последовательному изложению квантовой теории молекулярных систем, а также решению волновых уравнений в нерелятивистской и релятивистской квантовой механике молекул.… Купить за 855 грн (только Украина)
  • Методы математической физики молекулярных систем , Новосадов Б.К.. Монография посвящена последовательному изложению квантовой теории молекулярных систем, а также решению волновых уравнений в нерелятивистской и релятивистской квантовой механике молекул.…
  • 5. Принцип Гюйгенса-Френеля. Зоны Френеля. Прямолинейное распространение света. Принцип гюйгенса-френеля
  • Метод зон френеля
  • 7.Дифракция в паралллных лучах.Дифракция от одной щели.Условия максимумов и минимумов
  • §5 Дифракционная решетка.
  • 8.Дифракционная решетка.Дифракционные спектры.Условия главных максимумов
  • 9.Пространственная решетка. Формула Вульфа Брегга.Исследования структуры кристаллов. Оптически однородная среда.
  • 15.Дисперсия света.Спектры.Электронная теория дисперсии света.
  • 2. Электронная теория дисперсии света
  • 13.Двойное лучепреломление.Построения Гюйгенса для одноосных кристаллов.
  • 14.Давление света.Опыты Лебедева.Классическое и квантовое объяснение давления..
  • 16.Тепловое излучение.Испускательная и поглощательная способности.Абсолютно черное тело.Законкиргофа.
  • 22 Формулы де Бройля. Опытное обоснование корпускулярно-волнового дуализма свойств вещества. Дифракция электронов.
  • 23 Излучение Вавилова-Черенкова.
  • 24 Волновая функция и уравнение Шредингера. Статический смысл волновой функции.
  • 25 Уравнение Шредингера для стационарных состояний. Условия, налагаемые на волновую функцию. Нормировка волновой функции.
  • 26 Частица в одномерной прямоугольной потенциальной яме бесконечной глубины. Квантование энергии. Принцип соответствия Бора.
  • 27 Туннельный эффект. Линейный гармонический осциллятор.
  • 28 Основное состояние атома водорода по Шредингеру. Энергия основного cостояния. Размеры атома водорода.
  • 29.Постулаты Бора. Теория атома водорода по Бору. Недостатки теории Бора.
  • 30.Спектр атома водорода и его объяснение. Спектральные закономерности Ридберга
  • 31.Атом водорода в квантовой механике. Главное, орбитальное и магнитное поле.
  • 32.Спин электрона. Спиновое квантовое число. Опыт Штерна и Герлаха.
  • 33.Поглощение свет. Спонтанное и вынужденное испускание излучения. Инверсная населенность. Усиливающая среда
  • 34.Оптические квантовые генераторы(лазеры). Метастабильный уровень. Особенности лазерного излучения.
  • §2 Трехуровневая схема
  • 35.Лазеры. Усиливающая среда. Порог генерации лазерного излучения.
  • 36 Цепная реакция деления.Критическиеразмеры.Коэффициент размножения нейтронов.Мгновенные и запаздывающие нейтроны.
  • 37 Принцип Паули.Распределение электронов в атоме по состояниям.Периодическая система Менделеева.
  • 40 Радиоактивность. Закон радиоактивного распада.Закономерностипроисхождения α- β-и γ-излучения атомных ядер.Правила смещения
  • 41 Ядерные реакции и законы сохранения.Эффективное поперечное сечение.
  • 46. Понятие о ядерной энергетике. Ядерные реакторы. Понятие трансурановых элементов
  • 24 Волновая функция и уравнение Шредингера. Статический смысл волновой функции.

    Уравнение учитывающее волновые и корпускулярные свойства частицы было получено Шредингером в 1926г.

    Шредингер сопоставил движение частицы на комплексную функцию координат и времени, которая называетсяфункцией, эта функция является решением уравнения Шредингера:

    Где Лапласа, который можно

    расписать: ;; U-потенциальная энергия частицы; Где- функция координат и времени.

    В квантовой физикенельзя точно предсказатькакие либо события, а можно говорить только о вероятностиданного события, вероятность событий и определяет .

    1) Вероятность нахождения микрочастицы в объеме dV в момент времени Т:

    Сопряженные функции.

    2) Плотность вероятностей нахождения частицы в единице объема:

    3) Волновая функция должна удовлетворять условию:

    где 3 интеграла расчитываются по всему объему, где может находится частица.

    Данное условие означает, что пробывание частицы – достоверное событие с вероятностью 1

    25 Уравнение Шредингера для стационарных состояний. Условия, налагаемые на волновую функцию. Нормировка волновой функции.

    Для некоторых практических задач потенциальная энергия частицы не зависит от времени. В этом случае волновую функцию можно представить как произведение

    т.к. зависит только от времени, то разделим наполучим:

    Левая часть равенства зависит только от времени, правая только от координат, это равенство справедливо только если обе части = const, такой константоя является полная энергия частицы Е.

    Рассмотрим правую часть данного равенства: , преобразуем:- уравнение для стационарного состояния.

    Рассмотрим левую часть уравнения Шредингера: ;;

    разделим переменные , проинтегрируем полученное уравнение:

    воспользуясь математическими преобразованиями:

    В этом случае вероятность нахождения частицы можно определить:

    Либо после преобразований:

    –данная вероятность не зависит от времени, данное уравнение, характеризующее микрочастицы, получило название – стационарное состояние частицы.

    Обычно требуют, чтобы волновая функция была определена и непрерывна (бесконечное число раз дифференцируема) во всем пространстве, а также чтобы она была однозначной. Допустимым является один вид неоднозначности волновых функций -неоднозначность знака «+/».

    Волновая функция по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:

    Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо во всём пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

    26 Частица в одномерной прямоугольной потенциальной яме бесконечной глубины. Квантование энергии. Принцип соответствия Бора.

    Рассмотрим движение микрочастицы вдоль оси х в потенциальном поле.

    Такое потенциальное поле соответствует бесконечно глубокой потенциальной яме с плоским дном. Примером движения в потенциальной яме является движение электрона в металле. Но для выхода электрона из металла необходимо совершить работу, что и соответствует потенциальной энергии в уравнении Шредингера.

    При таком условии частица не проникает за пределы "ямы", т.е.

    y(0)= y(l)=0 В пределах ямы (0сведется к уравнению

    илиданное уравнение является диференциальным уравнением и согласно математике его решение является, гдеможно определить из граничных условий.

    n-главное квантовое число n=1,2,3…

    Анализ этого уравнения показывает, что в потенциальной яме энергия не может быть дискретной величиной.

    состояние с min энергией называется основным, все остальные возбужденные.

    Рассмотрим т.к. потенциальная яма одномерна, то можно записать, что, в местоподставим в выражение и получим. По скольку одномерная потенциальная яма с плоским дном, то

    Графически изобразим

    Из рисунка видно, что вероятность пребывания микрочастицы в разных местах отрезка неодинакова, с увеличением n вероятность нахождения частицы увеличивается

    Квантование энергии является одним из ключевых принципов, необходимых для понимания структурной организации материи, т.е. существования стабильных, повторяющихся в своих свойствах, молекул, атомов и более мелких структурных единиц, из которых состоит как вещество, так и излучение.

    Принцип квантования энергии гласит, что любая система взаимодействующих частиц, способная образовывать стабильное состояние - будь то кусок твердого тела, молекула, атом или атомное ядро, - может сделать это только при определенных значениях энергии.

    В квантовой механике принципом соответствия называется утверждение о том, что поведение квантовомеханической системы стремится к классической физике в пределе больших квантовых чисел. Этот принцип ввёл Нильс Бор в 1923 году.

    Правила квантовой механики очень успешно применяются в описании микроскопических объектов, типа атомов и элементарных частиц. С другой стороны, эксперименты показывают, что разнообразные макроскопические системы (пружина, конденсатор и т.д) можно достаточно точно описать в соответствии с классическими теориями, используя классическую механику и классическую электродинамику (хотя существуют макроскопические системы, демонстрирующие квантовое поведение, например, сверхтекучий жидкий гелий или сверхпроводники). Однако, весьма разумно полагать, что окончательные законы физики должны быть независимыми от размера описываемых физических объектов. Это предпосылка для принципа соответствия Бора, который утверждает, что классическая физика должна появиться как приближение к квантовой физике, поскольку системы становятся большими.

    Условия, при которых квантовая и классическая механики совпадают, называются классическим пределом. Бор предложил грубый критерий для классического предела: переход происходит, когда квантовые числа, описывающие систему являются большими, означая или возбуждение системы до больших квантовых чисел, или то, что система описана большим набором квантовых чисел, или оба случая. Более современная формулировка говорит, что классическое приближение справедливо при больших значениях действия

    Волновая функция
    Wave function

    Волновая функция (или вектор состояния) – комплексная функция, описывающая состояние квантовомеханической системы. Её знание позволяет получить максимально полные сведения о системе, принципиально достижимые в микромире. Так с её помощью можно рассчитать все измеряемые физические характеристики системы, вероятность пребывания её в определенном месте пространства и эволюцию во времени. Волновая функция может быть найдена в результате решения волнового уравнения Шредингера.
    Волновая функция ψ (x, y, z, t) ≡ ψ (x,t) точечной бесструктурной частицы является комплексной функцией координат этой частицы и времени. Простейшим примером такой функции является волновая функция свободной частицы с импульсом и полной энергией Е (плоская волна)

    .

    Волновая функция системы А частиц содержит координаты всех частиц: ψ ( 1 , 2 ,..., A ,t).
    Квадрат модуля волновой функции отдельной частицы | ψ (,t)| 2 = ψ *(,t) ψ (,t) дает вероятность обнаружить частицу в момент времени t в точке пространства, описываемой координатами , а именно, | ψ (,t)| 2 dv ≡ | ψ (x, y, z, t)| 2 dxdydz это вероятность найти частицу в области пространства объемом dv = dxdydz вокруг точки x, y, z. Аналогично, вероятность найти в момент времени t систему А частиц с координатами 1 , 2 ,..., A в элементе объема многомерного пространства дается величиной | ψ ( 1 , 2 ,..., A ,t)| 2 dv 1 dv 2 ...dv A .
    Волновая функция полностью определяет все физические характеристики квантовой системы. Так среднее наблюдаемое значение физической величины F у системы дается выражением

    ,

    где - оператор этой величины и интегрирование проводится по всей области многомерного пространства.
    В качестве независимых переменных волновой функции вместо координат частиц x, y, z могут быть выбраны их импульсы p x , p y , p z или другие наборы физических величин. Этот выбор зависит от представления (координатного, импульсного или другого).
    Волновая функция ψ (,t) частицы не учитывает ее внутренних характеристик и степеней свободы, т. е. описывает ее движение как целого бесструктурного (точечного) объекта по некой траектории (орбите) в пространстве. Этими внутренними характеристиками частицы могут быть её спин, спиральность, изоспин (для сильновзаимодействующих частиц), цвет (для кварков и глюонов) и некоторые другие. Внутренние характеристики частицы задаются специальной волновой функцией её внутреннего состояния φ. При этом полная волновая функция частицы Ψ может быть представлена в виде произведения функции орбитального движения ψ и внутренней функции φ:

    поскольку обычно внутренние характеристики частицы и её степени свободы, описывающие орбитальное движение, не зависят друг от друга.
    В качестве примера ограничимся случаем, когда единственной внутренней характеристикой, учитываемой функцией , является спин частицы, причем этот спин равен 1/2. Частица с таким спином может пребывать в одном из двух состояний − с проекцией спина на ось z, равной +1/2 (спин вверх), и с проекцией спина на ось z, равной -1/2 (спин вниз). Эту двойственность описывают спиновой функцией взятой в виде двухкомпонентного спинора:

    Тогда волновая функция Ψ +1/2 = χ +1/2 ψ будет описывать движение частицы со спином 1/2, направленным вверх, по траектории, определяемой функцией ψ , а волновая функция Ψ -1/2 = χ -1/2 ψ будет описывать движение по той же траектории этой же частицы, но со спином, направленным вниз.
    В заключении отметим, что в квантовой механике возможны такие состояния, которые нельзя описать с помощью волновой функции. Такие состояния называют смешанными и их описывают в рамках более сложного подхода, использующего понятие матрицы плотности. Состояния квантовой системы, описываемые волновой функцией, называют чистыми.

    Понравилась статья? Поделитесь с друзьями!
    Была ли эта статья полезной?
    Да
    Нет
    Спасибо, за Ваш отзыв!
    Что-то пошло не так и Ваш голос не был учтен.
    Спасибо. Ваше сообщение отправлено
    Нашли в тексте ошибку?
    Выделите её, нажмите Ctrl + Enter и мы всё исправим!