Мода и стиль. Красота и здоровье. Дом. Он и ты

Еще интересные световые явления. Общие сведения о свете

Осветите свои знания в области науки нашими забавными легкими фактами для детей. Наслаждайтесь интересными мелочами, связанными с скоростью света, оптикой, солнечным светом, ультрафиолетовым светом и инфракрасным светом. Понимают, как работает электромагнитное излучение, и обнаруживают множество увлекательных свойств света.

В физике свет относится к электромагнитному излучению. Свет, о котором мы обычно говорим в повседневной жизни, относится к видимому спектру (части электромагнитного спектра, который может видеть человеческий глаз).

Другие животные могут видеть части спектра, которые люди не могут. Например, большое количество насекомых может видеть ультрафиолетовый (УФ) свет.

Ультрафиолетовый свет можно использовать для того, чтобы показать вещи, которые человеческий глаз не видит, пригодится для криминалистов.

Длина волны инфракрасного света слишком велика, чтобы быть видимой для человеческого глаза.

Ученые изучают свойства и поведение света в области физики, известной как оптика.

Исаак Ньютон заметил, что тонкий луч солнечного света, поражающий стеклянную призму под углом, создает полосу видимых цветов, включающую красный, оранжевый, желтый, зеленый, синий, индиго и фиолетовый (ROYGBIV). Это произошло потому, что разные цвета проходят через стекло (и другие среды) с разной скоростью, заставляя их преломляться под разными углами и отделяться друг от друга.

Свет проходит очень, очень быстро. Скорость света в вакууме (область, свободная от материи) составляет около 186 000 миль в секунду (300 000 километров в секунду).

Свет распространяется медленнее с помощью различных сред, таких как стекло, вода и воздух. Этим средам дается показатель преломления для описания того, насколько они замедляют движение света. Стекло имеет показатель преломления 1,5, что означает, что огни проходят через него со скоростью около 124 000 миль в секунду (200 000 километров в секунду). Показатель преломления воды составляет 1,3, а показатель преломления воздуха — 1.0003, что означает, что воздух лишь слегка замедляет свет.

Свет занимает 1,255 секунды, чтобы добраться от Земли до Луны.

Солнечный свет может достигать глубины около 80 метров (262 фута) в океане.

Одна из многих вещей, над которыми работал итальянский ученый Галилей Галилей, — это телескопы, производящие телескопы с 30-кратным увеличением в некоторых из его более поздних работ. Эти телескопы помогли ему обнаружить четыре крупнейшие луны, вращающиеся вокруг Юпитера (позже названные спутниками Галилея).

Фотосинтез — это процесс, который включает растения, использующие энергию от солнечного света, для превращения углекислого газа в пищу.

План:Первые сведения о свете в античной период.
Создание основ геометрической оптики (Евклид,
Архимед, Птолемей, Лукреций Кар).
Развития учения о свете в период средневековья
(Роджер Бэкон) и в эпоху Возрождения (Леонардо
да Винчи, Порта).
Развития учения о свете в XVII веке (Кеплер, Гук,
Гюйгенс, Галилей, Ферми). Создание начал
волновой оптики и первых оптических приборов
(Липперсгей, Галилей, Левенгук).
Развитие оптики в XIX веке. Создание
теоретических и экспериментальных основ
волновой оптики (Юнг, Френель, Стефан,
Больцман, Вин, Максвелл, Майкельсон).

1. Первые сведения о свете в античной период. Создание основ геометрической оптики (Евклид, Архимед, Птолемей, Лукреций Кар).

Уже в III в до н. э. сложилась геометрическая оптика, основы
которой изложены в трудах знаменитого Евклида (300г. до н.
э.), обобщающего Эмпирические данные предшественников
(труды «оптика» и «катоптрики»). Следуя Платону, Евклид
разделяет теорию зрительных лучей. Эти лучи - прямые линии.
Видимость предмета обусловлено тем, что из глаза, как из
вершины, идет контур лучей, образующие которого
направленные касательно к границе предмета. Величина
предмета определяется под угловым зрения.
В «оптике» впервые формируется закон прямолинейного
распространения света.
В «Катоптрике» Евклида рассматривается явление отражения
света. Здесь сформулирован закон отражения света. Этот закон
применим как и плоским так и сферическим зеркалам.

Легенда приписывает Архимеду
сожжение римского флота с помощью
вогнутых зеркал. Древним был известно
действие линз, точнее- стеклянных
шариков. Так, драматург Аристофан,
современник Сократа, советует
должнику растопить долговое
обязательство, написанное на восковой
дощечке, с помощью зажигательного
стекла.

Птолемей (19-ок. 160 в. до н.э.) исследовал
преломление света с помощью (диск)
прибора, но закон преломление он не нашел.
Лукреций Кар (94-51гг.до н. э.) в своей
поэме « о природе вещей» трактует свет как
некий материальный субстрат. В ней мы
находим прообраз корпускулярной природы
света.
Из поэмы видно, что он был знаком закон
отражения света:
«… отскакивать все от вещей заставляет
природа и отражается назад под таким же
углом, как упало».

2. Развития учения о свете в период средневековья (Роджер Бэкон) и в эпоху Возрождения (Леонардо да Винчи, Порта).

В период средневековья оптика не получила какого-нибудь развития,
за исключением высказываний и наблюдений за световыми явлениями
в работах Роджера Бекона, относящихся к XIIIв.
Роджер Бэкон объяснял возникновение радуги преломлением в
дождевых каплях; людям со слабым зрением советовал прикладывать
к глазу выпуклую линзу.
В период эпохи Возрождения (XV- XVI вв.) значительный вклад в
развитие оптики внес Леонардо да Винчи. Он впервые установил, что
глаз принципиально схож с камерой- обскурой. Он же объяснил
стереоскопичность зрения видением двумя глазами. Ему принадлежат
первые идеи о волновом движении.

3. Развития учения о свете в XVII веке (Кеплер, Гук, Гюйгенс, Галилей, Ферми). Создание начал волновой оптики и первых оптических приборов (Липпе

3. Развития учения о свете в XVII веке (Кеплер, Гук, Гюйгенс,
Галилей, Ферми). Создание начал волновой оптики и
первых оптических приборов (Липперсгей, Галилей,
Левенгук).
В XVII веке оптика пережила исключительный расцвет. К
концу века она превратилась в развернутую мощную отрасль
физической науки наряду с механикой, доставила
единственно надежный материал для теоретических
обобщений.
В это период развернулась теоретическая борьба вокруг
вопроса о природе света.
Расцвет оптики начался с усовершенствованием методов
шлифовки оптических стекол и поисков увеличительных труб.

В 1608 г. голландец Липперсгей подал
заявку на выдачу ему патента на
зрительную трубу.
Галилей (1564-1642), услышав о трубе,
стал думать над его возможным
устройством и самостоятельно
изготовил называемую сейчас трубу
Галилея. Она используется в биноклях.

4. Развитие оптики в XIX веке. Создание теоретических и экспериментальных основ волновой оптики (Юнг, Френель, Стефан, Больцман, Вин, Максвелл,

Майкельсон).
В XIX веке в развитие учения о свете внесли большой вклад
ученые Юнг и Больцман, . Рассмотрим их работы.
Юнг Томас (1773- 1829)- английский ученый, один из
создателей волновой оптики, член Лондонского Королевского
общества и его секретарь (1802-1829). В 2 года начал читать,
обнаружив феноменальную память. В 4 года знал на память
сочинения многих английских поэтов, в 8-9 лет овладел
токарным мастерством, мастерил различные физические
приборы, в 14 лет познакомился с дифференциальным
исчислением (по Ньютону), изучил много языков. Учился в
Лондонском, Эдинбургском и Геттинском университетах, в
начале изучал медицину, потом увлекся физикой, в частности,
оптикой и акустикой. АВ последние годы жизни занимался
составлением египетского словаря.

В 1793 г. объяснил явление аккомодации глаза изменением
кривизны хрусталика
2. В 1800 г. выступил в защиту теории света.
3. В 1801 г. объяснил явление интерференции света и кольца
Ньютона.
4. В 1803 г. ввел термин «интерференция».
5. В 1803 г. предпринял попытку объяснить дифракцию света от
тонкой нити, связывая ее с интерференцией.
6. Показал, что при отражении луча света от более плотной
поверхности происходит потеря полуволны.
7. Измерил длины волн разных цветов, получил для длины
волны красного цвета 0, 7 микрона, для фиолетового- 0, 42.
8. Высказал мысль (1807 г.), что свет и лучистая теплота
отличаются друг от друга только длиной волны.
9. В 1817 г. выдвинул идею поперечности световых волн.

Больцман Людвиг (1844- 1906) - австрийский физик - теоретик,
член Австрийской и членкор. Петербургской АН.
В 1866 г. ввел закон распределения газовых молекул по
скоростям (статистика Больцмана).
В 1872 г. вывел основное уравнение кинетической энергии
газа:
p=2n m0 ˂v˃/2
3
где ˂v˃ – средняя скорость молекул, m0- масса молекулы, nконцентрация молекул (количество молекул в единице объема
газа).
В 1872 г. доказал статистический характер 2-го начала
термодинамики, показал несостоятельность гипотезы тепловой
смерти Вселенной.
Впервые к изучению применил принципы термодинамики.

Использую гипотезу Дж. Максвелла о световом давлении, в
1884 г. теоретически открыл закон теплового излучения:
4
E=ßT ,раннее (в 1879 г.) экспериментально установленный
Стефаном (закон Стефана- Больцмана).
В 1884 г. из термодинамических соображений вывел
существование давления света.
Отстаивал атомистическую теорию.
В честь Больцмана назван коэффициент пропорциональности в
уравнении:
p= knT,
-23
-1
равный 1,380662*10
Дж* К, названный постоянной
Больцмана- одной из важнейших постоянных в физике, равной
отношению температуры, выраженной в единицах энергии
(джоулях), к той же температуре, выраженной в градусах
Кельвина:
к=2/3*m(0) (v)*2/2/T

Вопросы:

1.
2.
3.
4.
5.
Кто открыл на Луне существование гор и
впадин?
Как называется поэма Лукреция Кара?
В период какой эпохи значительный вклад в
развитие оптики внес Леонардо да Винчи?
Какой термин вел Юнг Томас в 1803 году?
Кем и в каком году изобретен микроскоп?

Не так давно, в декабре 2000 года мировая научная общественность отмечала столетний юбилей возникновения новой науки – квантовой физики и открытие новой фундаментальной физической константы – постоянной Планка.

Заслуга в этом принадлежит выдающемуся немецкому физику Максу Планку. Событие это осталось практически незамеченным. Между тем, историческая дата 14 декабря 1900 г., когда на заседании Берлинского физического общества Макс Планк впервые произнес слово «квант», имеет все основания стать одним из самых значительных событий в истории человечества. С этого дня начинается отсчет того кардинального переворота в научной мысли, который к настоящему времени привел к качественно новым фундаментальным научным достижениям квантовой теории. В результате, к настоящему времени оказалась заложенной основа тем грядущим масштабным и глубоким изменениям во всех сферах общества, которые ожидают нас в недалеком будущем.

Планку удалось решить проблему спектрального распределения света, излучаемого нагретыми телами, проблему, перед которой классическая физика оказалась бессильной. Планк первым высказал гипотезу о квантовании энергии осциллятора, несовместимую с принципами классической физики. Именно эта гипотеза, развитая впоследствии трудами многих выдающихся физиков, дала толчок процессу пересмотра и ломки старых понятий, который завершился созданием квантовой физики, что и обусловило актуальность нашего исследования.

Цель работы – проанализировать квантовую теорию света.

В соответствии с поставленными целью решались следующие основные задачи :

Рассмотреть развитие представление о природе света;

Изучить квантовые свойства света: фотоэффект и эффект Комтона;

Проанализировать квантовую теорию Планка.

Методы исследования:

Обработка, анализ научных источников;

Анализ научной литературы, учебников и пособий по исследуемой проблеме.

Объект исследования – квантовая теория света

1. Развитие представлений о свете

Первые представления о природе света возникли у древних греков и египтян. По мере изобретения и совершенствования различных оптических приборов (параболических зеркал, микроскопа, зрительной трубы) эти представления развивались и трансформировались. В конце XVII века возникли две теории света: корпускулярная (И. Ньютон) и волновая (Р. Гук и Х. Гюйгенс).

Согласно корпускулярной теории, свет представляет собой поток частиц (корпускул), испускаемых светящимися телами. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости корпускул при переходе из одной среды в другую. Для случая преломления света на границе вакуум–среда корпускулярная теория приводила к следующему виду закона преломления:

где c – скорость света в вакууме, υ – скорость распространения света в среде. Так как n > 1, из корпускулярной теории следовало, что скорость света в средах должна быть больше скорости света в вакууме. Ньютон пытался также объяснить появление интерференционных полос, допуская определенную периодичность световых процессов. Таким образом, корпускулярная теория Ньютона содержала в себе элементы волновых представлений.

Волновая теория, в отличие от корпускулярной, рассматривала свет как волновой процесс, подобный механическим волнам. В основу волновой теории был положен принцип Гюйгенса, согласно которому каждая точка, до которой доходит волна, становится центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. С помощью принципа Гюйгенса были объяснены законы отражения и преломления. Рис. 1 дает представление о построениях Гюйгенса для определения направления распространения волны, преломленной на границе двух прозрачных сред.

Рис. 1. Построения Гюйгенса для определения направления преломленной волны.

Для случая преломления света на границе вакуум–среда волновая теория приводит к следующему выводу:

Закон преломления, полученный из волновой теории, оказался в противоречии с формулой Ньютона. Волновая теория приводит к выводу: υ < c, тогда как согласно корпускулярной теории υ > c.

Таким образом, к началу XVIII века существовало два противоположных подхода к объяснению природы света: корпускулярная теория Ньютона и волновая теория Гюйгенса. Обе теории объясняли прямолинейное распространение света, законы отражения и преломления. Весь XVIII век стал веком борьбы этих теорий. Однако в начале XIX столетия ситуация коренным образом изменилась. Корпускулярная теория была отвергнута и восторжествовала волновая теория. Большая заслуга в этом принадлежит английскому физику Т. Юнгу и французскому физику О. Френелю, исследовавшим явления интерференции и дифракции. Исчерпывающее объяснение этих явлений могло быть дано только на основе волновой теории. Важное экспериментальное подтверждение справедливости волновой теории было получено в 1851 году, когда Ж. Фуко (и независимо от него А. Физо) измерил скорость распространения света в воде и получил значение υ < c.

Хотя к середине XIX века волновая теория была общепризнана, вопрос о природе световых волн оставался нерешенным.

В 60-е годы XIX века Максвеллом были установлены общие законы электромагнитного поля, которые привели его к заключению, что свет – это электромагнитные волны. Важным подтверждением такой точки зрения послужило совпадение скорости света в вакууме с электродинамической постоянной Электромагнитная природа света получила признание после опытов Г. Герца (1887–1888 гг.) по исследованию электромагнитных волн. В начале XX века после опытов П. Н. Лебедева по измерению светового давления (1901 г.) электромагнитная теория света превратилась в твердо установленный факт .

Важнейшую роль в выяснении природы света сыграло опытное определение его скорости. Начиная с конца XVII века предпринимались неоднократные попытки измерения скорости света различными методами (астрономический метод А. Физо, метод А. Майкельсона). Современная лазерная техника позволяет измерять скорость света с очень высокой точностью на основе независимых измерений длины волны λ и частоты света ν (c = λ · ν). Таким путем было найдено значение

превосходящее по точности все ранее полученные значения более чем на два порядка.

Свет играет чрезвычайно важную роль в нашей жизни. Подавляющее количество информации об окружающем мире человек получает с помощью света. Однако, в оптике как разделе физике под светом понимают не только видимый свет, но и примыкающие к нему широкие диапазоны спектра электромагнитного излучения – инфракрасный ИК и ультрафиолетовый УФ. По своим физическим свойством свет принципиально неотличим от электромагнитного излучения других диапазонов – различные участки спектра отличаются друг от друга только длиной волны λ и частотой ν. Рис. 2. дает представление о шкале электромагнитных волн.

Рис. 2. Шкала электромагнитных волн. Границы между различными диапазонами условны

Для измерения длин волн в оптическом диапазоне используются единицы длины 1 нанометр (нм) и 1 микрометр (мкм):

1 нм = 10 –9 м = 10 –7 см = 10 –3 мкм.

Видимый свет занимает диапазон приблизительно от 400 нм до 780 нм или от 0,40 мкм до 0,78 мкм .

Электромагнитная теория света позволила объяснить многие оптические явления, такие как интерференция, дифракция, поляризация и т. д. Однако, эта теория не завершила понимание природы света. Уже в начале XX века выяснилось, что эта теория недостаточна для истолкования явлений атомного масштаба, возникающих при взаимодействии света с веществом. Для объяснения таких явлений, как излучение черного тела, фотоэффект, эффект Комптона и др. потребовалось введение квантовых представлений

2. Квантовые свойства света: фотоэффект. Эффект Комтона

Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в 1900 г. К этому времени уже был открыт электрон (Д. Томсон, 1897 г.), и стало ясно, что фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света.

Схема экспериментальной установки для исследования фотоэффекта изображена на рис. 3.

Рис. 3. Схема экспериментальной установки для изучения фотоэффекта

В экспериментах использовался стеклянный вакуумный баллон с двумя металлическими электродами, поверхность которых была тщательно очищена. К электродам прикладывалось некоторое напряжение U, полярность которого можно было изменять с помощью двойного ключа. Один из электродов (катод K) через кварцевое окошко освещался монохроматическим светом некоторой длины волны λ, и при неизменном световом потоке снималась зависимость силы фототока I от приложенного напряжения . На рис. 4 изображены типичные кривые такой зависимости, полученные при двух значениях интенсивности светового потока, падающего на катод.

Рис. 4.Зависимость силы фототока от приложенного напряжения. Кривая 2 соответствует большей интенсивности светового потока. Iн1 и Iн2 – токи насыщения, Uз – запирающий потенциал.

Кривые показывают, что при достаточно больших положительных напряжениях на аноде A фототок достигает насыщения, так как все электроны, вырванные светом из катода, достигают анода. Тщательные измерения показали, что ток насыщения Iн прямо пропорционален интенсивности падающего света. Когда напряжение на аноде отрицательно, электрическое поле между катодом и анодом тормозит электроны. Анода могут достичь только те электроны, кинетическая энергия которых превышает |eU|. Если напряжение на аноде меньше, чем –Uз, фототок прекращается. Измеряя Uз, можно определить максимальную кинетическую энергию фотоэлектронов:

К удивлению ученых, величина Uз оказалась не зависящей от интенсивности падающего светового потока. Тщательные измерения показали, что запирающий потенциал линейно возрастает с увеличением частоты ν света (рис. 5).

Рис. 5. Зависимость запирающего потенциала Uз от частоты ν падающего света.

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

4) Фотоэффект практически безинерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > νmin.

Все эти закономерности фотоэффекта в корне противоречили представлениям классической физики о взаимодействии света с веществом. Согласно волновым представлениям электрон при взаимодействии с электромагнитной световой волной должен был бы постепенно накапливать энергию, и потребовалось бы значительное время, зависящее от интенсивности света, чтобы электрон накопил достаточно энергии для того, чтобы вылететь из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Однако, опыт показывает, что фотоэлектроны появляются немедленно после начала освещения катода. В этой модели невозможно было также понять существование красной границы фотоэффекта. Волновая теория света не могла объяснить независимость энергии фотоэлектронов от интенсивности светового потока, пропорциональность максимальной кинетической энергии частоте света .

Таким образом, электромагнитная теория света оказалась неспособной объяснить эти закономерности.

Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе гипотезы М. Планка о том, что свет излучается и поглощается определенными порциями, причем энергия каждой такой порции определяется формулой E = hν, где h – постоянная Планка Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что и свет имеет прерывистую дискретную структуру. Электромагнитная волна состоит из отдельных порций – квантов, впоследствии названных фотонами. При взаимодействии с веществом фотон целиком передает всю свою энергию hν одному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл–вакуум. Для этого электрон должен совершить работу выхода A, зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

Эту формулу принято называть уравнением Эйнштейна для фотоэффекта.

С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Общее число фотоэлектронов, покидающих за 1 с поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Как следует из уравнения Эйнштейна, тангенс угла наклона прямой, выражающей зависимость запирающего потенциала Uз от частоты ν (рис. 5), равен отношению постоянной Планка h к заряду электрона e:

Это позволяет экспериментально определить значение постоянной Планка. Такие измерения были выполнены Р. Милликеном (1914 г.) и дали хорошее согласие со значением, найденным Планком. Эти измерения позволили также определить работу выхода A:

где c – скорость света, λкр – длина волны, соответствующая красной границе фотоэффекта. У большинства металлов работа выхода A составляет несколько электрон-вольт (1 эВ = 1,602·10–19 Дж). В квантовой физике часто используется электрон-вольт в качестве энергетической единицы измерения. Значение постоянной Планка, выраженное в электрон–вольтах в секунду, равно

h = 4,136·10 –15 эВ·с

Среди металлов наименьшей работой выхода обладают щелочные металлы. Например, у натрия A = 1,9 эВ, что соответствует красной границе фотоэффекта λкр ≈ 680 нм. Поэтому соединения щелочных металлов используют для создания катодов в фотоэлементах, предназначенных для регистрации видимого света .

Итак, законы фотоэффекта свидетельствуют, что свет при испускании и поглощении ведет себя подобно потоку частиц, получивших название фотонов или световых квантов.

Энергия фотонов равна

Фотон движется в вакууме со скоростью c. Фотон не имеет массы, m = 0. Из общего соотношения специальной теории относительности, связывающего энергию, импульс и массу любой частицы,

E 2 = m 2 c 4 + p 2 c 2 ,

следует, что фотон обладает импульсом

Таким образом, учение о свете, совершив виток длительностью в два столетия, вновь возвратилось к представлениям о световых частицах – корпускулах.

Но это не был механический возврат к корпускулярной теории Ньютона. В начале XX века стало ясно, что свет обладает двойственной природой. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), а при взаимодействии с веществом – корпускулярные (фотоэффект). Эта двойственная природа света получила название корпускулярно-волнового дуализма. Позже двойственная природа была открыта у электронов и других элементарных частиц. Классическая физика не может дать наглядной модели сочетания волновых и корпускулярных свойств у микрообъектов. Движением микрообъектов управляют не законы классической механики Ньютона, а законы квантовой механики. Теория излучения абсолютно черного тела, развитая М. Планком, и квантовая теория фотоэлектрического эффекта Эйнштейна лежат в основании этой современной науки.

Эффект Комптона

Концепция фотонов, предложенная А. Эйнштейном в 1905 г. для объяснения фотоэффекта, получила экспериментальное подтверждение в опытах американского физика А. Комптона (1922 г.). Комптон исследовал упругое рассеяние коротковолнового рентгеновского излучения на свободных (или слабо связанных с атомами) электронах вещества. Открытый им эффект увеличения длины волны рассеянного излучения, названный впоследствии эффектом Комптона, не укладывается в рамки волновой теории, согласно которой длина волны излучения не должна изменяться при рассеянии. Согласно волновой теории, электрон под действием периодического поля световой волны совершает вынужденные колебания на частоте волны и поэтому излучает рассеянные волны той же частоты .

Схема Комптона представлена на рис. 6. Монохроматическое рентгеновское излучение с длиной волны λ0, исходящее из рентгеновской трубки R, проходит через свинцовые диафрагмы и в виде узкого пучка направляется на рассеивающее вещество-мишень P (графит, алюминий). Излучение, рассеянное под некоторым углом θ, анализируется с помощью спектрографа рентгеновских лучей S, в котором роль дифракционной решетки играет кристалл K, закрепленный на поворотном столике. Опыт показал, что в рассеянном излучении наблюдается увеличение длины волны Δλ, зависящее от угла рассеяния θ:

Δλ = λ - λ 0 = 2Λ sin 2 θ / 2,

где Λ = 2,43·10–3 нм – так называемая комптоновская длина волны, не зависящая от свойств рассеивающего вещества. В рассеянном излучении наряду со спектральной линией с длиной волны λ наблюдается несмещенная линия с длиной волны λ0. Соотношение интенсивностей смещенной и несмещенной линий зависит от рода рассеивающего вещества.

Рис.6. Схема эксперимента Комптона

На рис.7 представлены кривые распределения интенсивности в спектре излучения, рассеянного под некоторыми углами.

Рис. 7. Спектры рассеянного излучения

Объяснение эффекта Комптона было дано в 1923 году А. Комптоном и П. Дебаем (независимо) на основе квантовых представлений о природе излучения. Если принять, что излучение представляет собой поток фотонов, то эффект Комптона есть результат упругого столкновения рентгеновских фотонов со свободными электронами вещества. У легких атомов рассеивающих веществ электроны слабо связаны с ядрами атомов, поэтому их можно считать свободными. В процессе столкновения фотон передает электрону часть своей энергии и импульса в соответствии с законами сохранения .

Рассмотрим упругое столкновение двух частиц – налетающего фотона, обладающего энергией E0 = hν0 и импульсом p0 = hν0 / c, с покоящимся электроном, энергия покоя которого равна Фотон, столкнувшись с электроном, изменяет направление движения (рассеивается). Импульс фотона после рассеяния становится равным p = hν / c, а его энергия E = hν < E0. Уменьшение энергии фотона означает увеличение длины волны. Энергия электрона после столкновения в соответствии с релятивистской формулой (см. § 7.5) становится равной где pe – приобретенный импульс электрона. Закон сохранения записывается в виде

Закон сохранения импульса

можно переписать в скалярной форме, если воспользоваться теоремой косинусов (см. диаграмму импульсов, рис. 8):

Рис. 8.Диаграмма импульсов при упругом рассеянии фотона на покоящемся электроне.

Из двух соотношений, выражающих законы сохранения энергии и импульса, после несложных преобразований и исключения величины pe можно получить

mc 2 (ν 0 – ν) = hν 0 ν(1 – cos θ).

Переход от частот к длинам волн приводит к выражению, которое совпадает с формулой Комптона, полученной из эксперимента:

Таким образом, теоретический расчет, выполненный на основе квантовых представлений дал исчерпывающее объяснение эффекту Комптона и позволил выразить комптоновскую длину волны Λ через фундаментальные константы h, c и m:

Как показывает опыт, в рассеянном излучении наряду со смещенной линией с длиной волны λ наблюдается и несмещенная линия с первоначальной длиной волны λ0. Это объясняется взаимодействием части фотонов с электронами, сильно связанными с атомами. В этом случае фотон обменивается энергией и импульсом с атомом в целом. Из-за большой массы атома по сравнению с массой электрона атому передается лишь ничтожная часть энергии фотона, поэтому длина волны λ рассеянного излучения практически не отличается от длины волны λ0 падающего излучения .

3. Квантовая теория Планка

Планк пришел к выводу, что процессы излучения и поглощения нагретым телом электромагнитной энергии, происходят не непрерывно, как это принимала классическая физика, а конечными порциями – квантами. Квант – это минимальная порция энергии, излучаемой или поглощаемой телом. По теории Планка, энергия кванта E прямо пропорциональна частоте света:

где h – так называемая постоянная Планка, равная h = 6,626·10–34 Дж·с. Постоянная Планка – это универсальная константа, которая в квантовой физике играет ту же роль, что и скорость света в СТО.

На основе гипотезы о прерывистом характере процессов излучения и поглощения телами электромагнитного излучения Планк получил формулу для спектральной светимости абсолютно черного тела. Формулу Планка удобно записывать в форме, выражающей распределение энергии в спектре излучения абсолютно черного тела по частотам ν, а не по длинам волн λ.

Здесь c – скорость света, h – постоянная Планка, k – постоянная Больцмана, T – абсолютная температура.

Решение проблемы излучения черного тела ознаменовало начало новой эры в физике. Нелегко было примириться с отказом от классических представлений, и сам Планк, совершив великое открытие, в течение нескольких лет безуспешно пытался понять квантование энергии с позиции классической физики

ЗАКЛЮЧЕНИЕ

Таким образом, первые представления о природе света возникли у древних греков и египтян. По мере изобретения и совершенствования различных оптических приборов эти представления развивались и трансформировались. В конце XVII века возникли две теории света: корпускулярная И. Ньютона и волновая Р. Гука и Х. Гюйгенса.

Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в 1900 г. К этому времени уже был открыт электрон, и стало ясно, что фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света.

В результате, многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

1) Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности.

2) Для каждого вещества существует так называемая красная граница фотоэффекта, т. е. наименьшая частота νmin, при которой еще возможен внешний фотоэффект.

3) Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.

4) Фотоэффект практически безинерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > νmin.

Концепция фотонов, предложенная А. Эйнштейном в 1905 г. для объяснения фотоэффекта, получила экспериментальное подтверждение в опытах американского физика А. Комптона (1922 г.). Комптон исследовал упругое рассеяние коротковолнового рентгеновского излучения на свободных (или слабо связанных с атомами) электронах вещества. Открытый им эффект увеличения длины волны рассеянного излучения, названный впоследствии эффектом Комптона, не укладывается в рамки волновой теории, согласно которой длина волны излучения не должна изменяться при рассеянии.

В 1900 г. Планк выдвинул гипотезу о квантованности излучаемой энергии.

Формула Планка хорошо описывает спектральное распределение излучения черного тела при любых частотах. Она прекрасно согласуется с экспериментальными данными.

Идея квантования является одной из величайших физических идей. Оказалось, что многие величины считавшиеся непрерывными, имеют дискретный ряд значений. На базе этой идеи возникла квантовая механика, описывающая законы поведения микрочастиц

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Гусейханов, М.К. Концепции современного естествознания: - М. : Дашков и К, 2005. - 692 с.

2. Дубнищева, Т.Я. Концепции современного естествознания. Основной курс в вопросах и ответах: Учеб. пособие для вузов / Т.Я. Дубнищева. - Новосибирск: Сибирское унив. изд-во, 2003. - 407 с.

3. Концепции современного естествознания: учеб. для вузов / Под ред. В.Н. Лавриненко, В.П. Ратникова.- 3-е изд., перераб. и доп. - М. : ЮНИТИ-ДАНА, 2003. - 317 с.

4. Лебедев С.А. Концепции современного естествознания. – М.: 2007

5. Покровский, А.К. Концепции современного естествознания: Учеб. для вузов / А.К. Покровский, Л.Б. Миротин; под ред. Л.Б. Миротина. - М.: Экзамен, 2005. - 480 с

6. Рузавин, Г.И. Концепции современного естествознания: Учеб. для вузов / Г.И. Рузавин. - М. : Юнити, 2005. - 287 с.

7. Суханов А.Д., Голубева О.Н. Концепции современного естествознания. М., 2004

8. Торосян, В.Г. Концепции современного естествознания: учеб. пособие для вузов / В.Г. Торосян. - М. : Высш. шк., 2003. - 208 с.


Концепции современного естествознания: учеб. для вузов / Под ред. В.Н. Лавриненко, В.П. Ратникова.- 3-е изд., перераб. и доп. - М. : ЮНИТИ-ДАНА, 2003. - 317 с.

Рузавин, Г.И. Концепции современного естествознания: Учеб. для вузов / Г.И. Рузавин. - М. : Юнити, 2005. - 287 с.

Дубнищева, Т.Я. Концепции современного естествознания. Основной курс в вопросах и ответах: Учеб. пособие для вузов / Т.Я. Дубнищева. - Новосибирск: Сибирское унив. изд-во, 2003. - 407 с.

Лебедев С.А. Концепции современного естествознания. – М.: 2007

Гусейханов, М.К. Концепции современного естествознания: - М. : Дашков и К, 2005. - 692 с.

Суханов А.Д., Голубева О.Н. Концепции современного естествознания. М., 2004

Торосян, В.Г. Концепции современного естествознания: учеб. пособие для вузов / В.Г. Торосян. - М. : Высш. шк., 2003. - 208 с.

Оптика - раздел физики, в котором изучаются вопрос о природе света, закономерности световых явлений и процессы взаимодействия света с веществом.

В течение последних двух с половиной столетий представление о природе света претерпело весьма существенное изменение. В конце XVII в. сформировались две принципиально различные теории о природе света: корпускулярная теория, разработанная Ньютоном, и волновая теория, разработанная Гюйгенсом. Согласно корпускулярной теории, свет есть поток материальных частиц (корпускул), летящих с большой скоростью от источника света. Согласно волновой теории, свет представляет собой волну, исходящую от источника света и распространяющуюся с большой скоростью в «мировом эфире» - неподвижной упругой среде, непрерывно заполняющей всю Вселенную. Обе теории удовлетворительно объясняли закономерности, присущие некоторым световым явлениям, например законы отражения и преломления света. Однако такие явления, как интерференция, дифракция и поляризация света, не укладывались в рамки этих теорий.

До конца XVIII в. подавляющее большинство физиков отдавало предпочтение корпускулярной теории Ньютона. В начале XIX в. благодаря исследованиям Юнга (1801) и Френеля (1815 г.) волновая теория была в значительной мере развита и усовершенствована. В ее основу лег принцип Гюйгенса - Френеля, с которым мы уже ознакомились в главе «Колебания и волны» (см. § 34). Волновая теория Гюйгенса - Юнга - Френеля успешно объяснила почти все известные в то время световые явления, в том числе интерференцию, дифракцию и поляризацию света, в связи с чем эта теория получила всеобщее признание, а корпускулярная теория Ньютона была отвергнута.

Слабым местом волновой теории являлся гипотетический «мировой эфир», реальность существования которого оставалась весьма

сомнительной. Однако в 60-х годах прошедшего столетия, когда Максвелл разработал теорию единого электромагнитного поля (см. § 105), необходимость в «мировом эфире» как особом носителе световых волн отпала: выяснилось, что свет представляет собой электромагнитные волны и, следовательно, их носителем является электромагнитное поле. Видимому свету соответствуют электромагнитные волны длиной от 0,77 до 0,38 мкм (см. таблицу на стр. 392), создаваемые колебаниями зарядов, входящих в состав атомов и молекул. Таким образом, волновая теория о природе света эволюционировала в электромагнитную теорию света.

Одним из важнейших экспериментальных доказательств справедливости электромагнитной теории света послужили опыты Физо (1849 г.) Фуко (1850 г.) и Майкельсона (1881 г.): экспериментальное значение скорости распространения света совпало с теоретическим значением скорости распространения электромагнитных волн, полученным из электромагнитной теории Максвелла. Другим не менее важным подтверждением электромагнитной теории явились опыты Я. Я. Лебедева (1899 г.): измеренное им световое давление на твердые тела (см. § 137) оказалось равным давлению электромагнитных волн, рассчитанному на основе теории Максвелла (см. § 105).

Представление о волновой (электромагнитной) природе света оставалось незыблемым вплоть до конца XIX в. Однако к этому времени накопился достаточно обширный материал, не согласующийся с этим представлением и даже противоречащий ему. Изучение данных о спектрах свечения химических элементов, о распределении энергии в спектре теплового излучения черного тела, о фотоэлектрическом эффекте и некоторых других явлениях привело к необходимости предположить, что излучение, распространение и поглощение электромагнитной энергии носит дискретный (прерывистый) характер, т. е. свет испускается, распространяется и поглощается не непрерывно (как это следовало из волновой теории), а порциями (квантами). Исходя из этого предположения немецкий физик Планк в 1900 г. создал квантовую теорию электромагнитных процессов, а Эйнштейн в 1905 г. разработал квантовую тгоршо света, согласно которой свет представляет собой поток световых частиц - фотонов. Таким образом, в начале текущего столетия возникла новая теория о природе света - квантовая теория, возрождающая в известном смысле корпускулярную теорию Ньютона. Однако фотоны существенно (качественно) отличаются от обычных материальных частиц: все фотоны движутся со скоростью, равной скорости света, обладая при этом конечной массой («масса покоя» фотона равна нулю).

Важную роль в дальнейшем развитии квантовой теории света сыграли теоретические исследования атомщдх и молекулярных спектров, выполненные Бором (1913 г.), Шредингером (1925 г.), Дираком

(1930 г.), Фейнманом (1949 г.), В. А. Фоком (1957 г.) и др. По современным воззрениям, свет - сложный электромагнитный процесс, обладающий как волновыми, так и корпускулярными свойствами. В некоторых явлениях (интерференция, дифракция, поляризация света) обнаруживаются волновые свойства света; эти явления описываются волновой теорией. В других явлениях (фотоэффект, люминесценция, атомные и молекулярные спектры) обнаруживаются корпускулярные свойства света; такие явления описываются квантовой теорией. Таким образом, волновая (электромагнитная) и корпускулярная (квантовая) теория не отвергают, а дополняют друг друга, отражая тем самым двойственный характер свойств света. Здесь мы встречаемся с наглядным примером диалектического единства противоположностей: свет является и волной и частицей. Уместно подчеркнуть, что подобный дуализм присущ не только свету, но и микрочастицам веществ, например, как уже отмечалось (см. § 20), электрон, рассматриваемый обычно как частица, в некоторых явлениях обнаруживает себя в качестве волны (см. § 126).

Современная физика стремится создать единую теорию о природе света, отражающую двойственный корпускулярно-волновой характер света; разработка такой единой теории пока еще не завершена.

В данном курсе волновые свойства света рассматриваются в гл. XVIII, а корпускулярные (квантовые) свойства света - в гл. XIX (в связи с вопросом о строении атома). При описании волновых свойств света мы будем пользоваться принципом Гюйгенса - Френеля и общими понятиями и характеристиками волнового процесса, введенными в § 31-34 первой части курса (такими, как фронт световой волны, когерентные источники света, световой луч, частота света, длина световой волны и т. д.). Поэтому, приступая к изучению оптики, следует повторно прочесть указанные параграфы.

Глория или Радужный ореол

Когда свет как бы рассеивается обратно (смесь отражения, преломления и дифракции) — назад к его источнику, капелькам воды в облаках, тень объекта между облаком и источником может быть разделена на цветные полосы. Glory переводится ещё как неземная красота — достаточно точное название такому прекрасному природному феномену) В некоторых частях Китая этот феномен даже называют Светом Будды — он часто сопровождается Призраком Брокена.

Брокенский призрак

Брокенский призрак (нем. Brockengespenst), также называемый горным призраком — это увеличенная тень наблюдателя на поверхности облаков (тумана) в направлении, противоположном Солнцу. Тень иногда окружают цветные кольца (так называемая глория).

Явление можно наблюдать в условиях горного тумана или облачности, или даже из самолёта. Но известность оно приобрело благодаря пику Брокен в горах Гарц в Германии, где постоянные туманы и доступность малых высот позволяют наблюдать его особенно часто. Это способствовало возникновению местной легенды, по которой и дали явлению название.
Впревые "Брокенский призрак" был описан в 1780 году Иоганном Зильбершлагом, который налюдал его в горах Гарц (Германия) на пике Брокен. С тех пор об этой горе рассказывают страшные байки про вампиров и привидений. Но окончательную славу Брокену принес Иоганн Вольфганг фон Гёте. Именно на это вершину поднимается Фауст и Мефистофель, чтобы попасть на ведьминский шабаш. А в главе "Вальпургиева ночь" можно найти точное описание брокенского призрака:

Взгляни на край бугра.
Мефисто, видишь, там у края
Тень одинокая такая?
Она по воздуху скользит,
Земли ногой не задевая.

Это явление можно увидеть в любом горном регионе, таком, как Национальный парк Халикала на острове Мауи на Гаваях или в валлийских горах.

Брокенский призрак появляется, когда Солнце светит из-за альпиниста, смотрящего вниз с хребта или пика в туман. Свет проецирует тень альпиниста вперёд сквозь туман, часто принимая причудливые угловатые очертания, вызванные перспективой. Увеличение размеров тени — оптическая иллюзия, объясняемая тем, что наблюдатель соизмеряет свою тень, лежащую на относительно близлежащих облаках, с далекими объектами поверхности, видимой сквозь просветы в облаках; или когда невозможно сориентироваться в тумане и соизмерить размеры. Кроме того, тени попадают на капли воды, находящиеся на различных расстояниях от глаза, что нарушает восприятие глубины. Призрак может приходить в движение (иногда совершенно неожиданно) из-за движения облачного слоя и колебания плотности в облаке.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!