Мода и стиль. Красота и здоровье. Дом. Он и ты

Единицы термодинамических температур. Термодинамическая система

Давление газа, заключенного в постоянный объем, не является пропорциональным температуре, отсчитанной по шкале Цельсия. Это ясно, например, из таблицы, приведенной в предыдущем параграфе.. Если при давление газа равно 1, 37 атм, то при оно равно 1,73 атм. Температура, отсчитанная по шкале Цельсия, увеличилась вдвое, а давление газа увеличилось только в 1,26 раза. Ничего удивительного в этом нет, ибо шкала Цельсия установлена условно, без всякой связи с законами расширения газа. Можно, однако, пользуясь газовыми законами, установить такую шкалу температур, что давление газа будет пропорционально температуре, измеренной по этой шкале.

В самом деле, пусть при некоторой температуре давление газа равно а при некоторой другой температуре давление газа равно . По закону Шарля

Разделив эти равенства почленно, получим

Величину можно рассматривать как значение температуры, отсчитанное по новой температурной шкале, единица которой такая же, как и у шкалы Цельсия, а за нуль принята точка, лежащая на ниже точки, принятой за нуль шкалы Цельсия, т. е. точки таяния льда. Нуль этой новой шкалы называют абсолютным нулем. Это название обусловлено тем, что, как было доказано английским физиком Вильямом Томсоном Кельвином (1824-1907), ни одно тело не может быть охлаждено ниже этой температуры. Эту новую шкалу называют термодинамической шкалой температур. Таким образом, абсолютный нуль указывает температуру, равную , и представляет собой температуру, ниже которой не может быть ни при каких условиях охлаждено ни одно тело.

Температура представляет собой термодинамическую температуру тела, имеющего по шкале Цельсия температуру, равную . Обычно термодинамическую температуру обозначают буквой . Единица термодинамической шкалы температур носит название кельвин и является одной из основных единиц СИ. Кельвин совпадает с градусом Цельсия.

Между температурой , отсчитанной по шкале Цельсия, и термодинамической температурой имеются следующие соотношения:

Из сказанного вытекает, что равенство (234.1) можно представить в виде

Давление данной массы газа при постоянном объеме пропорционально термодинамической температуре. Это - другое выражение закона Шарля.

Формулой (234.2) удобно пользоваться и в том случае, когда давление при неизвестно. Рассмотрим пример. Пусть при давление газа в баллоне . Каково давление при температуре ? В данном случае термодинамические температуры газа равны соответственно

Пользуясь законом Шарля, можем написать

234.1. Манометр на баллоне с кислородом в помещении с температурой воздуха, равной , показывал давление 95 атм. Этот баллон вынесли в сарай, где на другой день при температуре показание манометра было 85 атм. Возникло подозрение, что часть кислорода из баллона была израсходована. Проверьте, правильно ли это подозрение.

Термодинамика имеет дело с термоди­намической системой - совокупностью макроскопических тел, которые взаимо­действуют и обмениваются энергией как между собой, так и с другими телами (внешней средой). Основа термодинами­ческого метода - определение состояния термодинамической системы. Состояние системы задается термодинамическими параметрами (параметрами состояния) - совокупностью физических величин, ха­рактеризующих свойства термодинамиче­ской системы. Обычно в качестве парамет­ров состояния выбирают температуру, давление и удельный объем.

Температура - одно из основных по­нятий, играющих важную роль не только в термодинамике, но и в физике в целом. Температура - физическая величина, ха­рактеризующая состояние термодинами­ческого равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960) в настоящее время можно применять только две температурные шка­лы - термодинамическую и Международ­ную практическую, градуированные соот­ветственно в Кельвинах (К) и в градусах Цельсия (°С).

В Международной практической шка­ле температура замерзания и кипения во­ды при давлении 1,013 10 5 Па соответ­ственно 0 и 100 °С (так называемые реперные точки).

Термодинамическая температурная шкала определяется по одной реперной точке, в качестве которой взята тройная точка воды (температура, при которой лед, вода и насыщенный пар при давле­нии 609 Па находятся в термодинамиче­ском равновесии). Температура этой точки по термодинамической шкале равна 273,16 К, (точно). Градус Цельсия равен Кельвину. В термодинамической шкале температура замерзания воды равна 273,15 К (при том же давлении, что и в Международной практической шкале), поэтому, по определению, термодинамиче­ская температура и температура по Меж­дународной практической шкале связаны соотношением T=273,15+t. Температура T=0 называется нулем кельвин. Анализ различных процессов показывает, что 0 К недостижим, хотя приближение к нему сколь угодно близко возможно.

Удельный объем v - это объем едини­цы массы. Когда тело однородно, т. е. его плотность =const, то v = V / m = 1/. Так как при постоянной массе удельный объем пропорционален общему объему, то мак­роскопические свойства однородного тела можно характеризовать объемом тела.

Параметры состояния системы могут изменяться. Любое изменение в термоди­намической системе, связанное с измене­нием хотя бы одного из ее термодинамиче­ских параметров, называется термодина­мическим процессом. Макроскопическая система находится в термодинамическом равновесии, если ее состояние с течением времени не меняется (предполагается, что внешние условия рассматриваемой систе­мы при этом не изменяются).

46. Взаимодействие атомов между собой

При рассмотрении реальных газов -

газов, свойства которых зависят от взаи­модействия молекул, надо учитывать силы межмолекулярного взаимодействия. Они

проявляются на расстояниях 10 -9 м и быстро убывают при увеличении рассто­яния между молекулами. Такие силы на­зываются короткодействующими.

В XX в., по мере развития представле­ний о строении атома и квантовой механи­ки, было выяснено, что между молекулами вещества одновременно действуют силы притяжения и силы отталкивания. На рис. 88, а приведена качественная зависи­мость сил межмолекулярного взаимодей­ствия от расстояния r между молекулами, где F o и F п - соответственно силы оттал­кивания и притяжения, a F - их результи­рующая. Силы отталкивания считаются положительными, а силы взаимного при­тяжения - отрицательными.

На расстоянии r = r 0 результирующая сила F =0, т. е. силы притяжения и оттал­кивания уравновешивают друг друга. Та­ким образом, расстояние r 0 соответствует равновесному расстоянию между молеку­лами, на котором бы они находились в от­сутствие теплового движения. При r

преобладают силы отталкивания (F>0), при r>r 0 - силы притяжения (F<0). На расстояниях r>10 -9 м межмолекулярные силы взаимодействия практически отсут­ствуют (F 0).

Элементарная работа A силы F при увеличении расстояния между молекула­ми на dr совершается за счет уменьше­ния взаимной потенциальной энергии мо­лекул, т. е.

A=Fdr=-dП. (60.1)

Из анализа качественной зависимости по­тенциальной энергии взаимодействия мо­лекул от расстояния между ними (рис. 88, б) следует, что если молекулы находятся друг от друга на расстоянии, на котором межмолекулярные силы взаимо­действия не действуют (г), то П=0. При постепенном сближении молекул между ними появляются силы притяжения (F<0), которые совершают положитель­ную работу (A=Fdr>0). Тогда, со­гласно (60.1), потенциальная энергия вза­имодействия уменьшается, достигая мини­мума при r=r 0 . При r< r 0 с уменьшением r силы отталкивания (F >0) резко воз­растают и совершаемая против них работа отрицательна (A = Fdr <0). Потенци­альная энергия начинает тоже резко воз­растать и становится положительной. Из данной потенциальной кривой следует, что система из двух взаимодействующих мо­лекул в состоянии устойчивого равновесия (r=r 0) обладает минимальной потенци­альной энергией.

Критерием различных агрегатных со­стояний вещества является соотношение величин П min и kT . П min - наименьшая потенциальная энергия взаимодействия молекул - определяет работу, которую нужно совершить против сил притяже­ния для того, чтобы разъединить моле­кулы, находящиеся в равновесии (r=r 0); kT определяет удвоенную среднюю энер­гию, приходящуюся на одну степень сво­боды хаотического теплового движения молекул.

Если П min <, т. е. вероятность образования агрегатов из молекул доста­точно мала. Если II min >>kT , то вещество находится в твердом состоянии, так как молекулы, притягиваясь друг к другу, не могут удалиться на значительные расстоя­ния и колеблются около положений равно­весия, определяемого r0. Если П min kT , то вещество находится в жидком состоя­нии, так как в результате теплового дви­жения молекулы перемещаются в про­странстве, обмениваясь местами, но не расходясь на расстояние, превышающее r 0 . Таким образом, любое вещество в за­висимости от температуры может нахо­диться в газообразном, жидком или твер­дом агрегатном состоянии, причем темпе­ратура перехода из одного агрегатного состояния в другое зависит от значения П min для данного вещества. Например, у инертных газов П min мало, а у метал­лов - велико, поэтому при обычных (ком­натных) температурах они находятся со­ответственно в газообразном и твердом со­стояниях.

Термодинамическая система. Температура.

Наименование параметра Значение
Тема статьи: Термодинамическая система. Температура.
Рубрика (тематическая категория) Механика

Система, в которой определœена температура (как один из параметров состояния), является термодинамической системой. Это утверждение может считаться ʼʼнулевымʼʼ началом термодинамики.

Определœение температуры базируется на понятии теплового равновесия термодинамической системы и его транзитивности.

В общем виде равновесие двух термодинамических систем, находящихся в тепловом контакте определяется некоторой функцией набора параметров двух систем

В соответствии со схемой транзитивности можно записать

Можно показать, что этой схеме уравнений удовлетворяет только ʼʼразностныйʼʼ вид функции

Отсюда следует уравнение

ĸᴏᴛᴏᴩᴏᴇ является уравнением равновесия термодинамической системы. Тепловое равновесие двух систем определяется равенством для этих систем параметров q. Этот параметр q и можно принять за меру температуры. Измерение температуры осуществляется термометром – малой термодинамической системой, которую приводят в тепловой контакт с измеряемой системой. Для построения шкалы температур можно использовать любой параметр ʼʼтермометраʼʼ, который является функцией температуры.

Считается, что для логического определœения температуры замкнутой системы она (система) должна быть макроскопической (состоять из большого числа ʼʼчастицʼʼ) и быть равновесной. Температура является скалярным, интенсивным параметром. В равновесной термодинамической системе температура должна быть постоянной по всœему объёму. Температура определяет внутреннюю энергию системы и с точки зрения статистической термодинамики определяет вероятность состояния системы. В соответствии со сказанным приведем следующие формулы:

Энергия идеального газа (i – число степеней свободы ʼʼчастицыʼʼ идеального газа, N – число частиц).

Закон Стефана-Больцмана (плотность энергии равновесного теплового излучения).

- вероятность системы, погруженной в термостат находится в i -ом квантовом состоянии. E i – энергия этого состояния. В этих формулах T – температура по шкале Кельвина.

2. Первый закон термодинамики (первое начало). Химический потенциал.

Первый закон термодинамики записывают в виде

Энергию системы можно изменить тремя способами. Сообщить тепло, совершить над системой работу и добавить число частиц. В третье слагаемое входит величина m , называемая химическим потенциалом. В соответствии с формулой

Химический потенциал численно равен удельному изменению энергии в условиях отсутствия теплообмена и работы.

3. Второй закон термодинамики (второе начало).

ʼʼНевозможен процесс, единственным конечным результатом которого будет превращение в работу теплоты, извлеченной из источника, имеющего всюду одинаковую температуруʼʼ. (Постулат Кельвина, невозможность вечного двигателя второго рода.)

ʼʼНевозможен процесс, единственным конечным результатом которого был бы переход теплоты от тела с данной температурой к телу с более высокой температуройʼʼ. (Постулат Клаузиуса.)


Термодинамическая температура (шкала).

Абсолютная термодинамическая шкала температур строится на базе циклического процесса.

Здесь показан точный график цикла Карно с условными параметрами Т 2 = 2, Т 1 = 1, R = 1. В ходе цикла на участке 2 – 3 принимается теплота Q 2 от источника при температуре Т 2 , на участке 4 – 1 отдается количество теплоты Q 1 системе имеющей температуру Т 1 .

Можно показать что, для равновесного цикла Карно величина отношения теплот цикла является функцией только температур и не зависит от ʼʼрабочего телаʼʼ тепловой машины.

Термодинамическая температура в физике всегда обозначается буквой T, измеряется в кельвинах (обозначается K) и отсчитывается исключительно по абсолютной термодинамической шкале под названием шкал Кельвина. Абсолютная температура в термодинамике является основной шкалой в физике и в термодинамических уравнениях.

Молекулярно-кинетическая гипотеза, со своей стороны, непосредственно соединяет абсолютную температуру со средним коэффициентом кинетической энергией прямолинейного движения молекул идеального газа в условиях постоянного равновесия.

История измерения температуры

Измерение температуры в термодинамики прошло достаточно долгий и трудный путь в своём развитии. Так как температура невозможно измерить непосредственно, то для её измерения ученые применяли свойства термометрических веществ, находившиеся в функциональной зависимости от коэффициента температуры. На этой основе в итоге были созданы различные температурные шкалы, получившие название эмпирических, а измеренная посредством их температура носит название эмпирической.

Замечание 1

Весомыми недостатками эмпирических шкал считается наличие несовпадения и непостоянства значений температур для различных термометрических тел: как между реперными материальными точками, так и за их границами.

Такое явление связано с отсутствием в природе универсального вещества, способного сохранять свои свойства в диапазоне всевозможных температур. В 1848 году Томсон решил с помощью экспериментов выбрать наиболее подходящий градус температурной среды таким образом, чтобы в её пределах эффективность тепловой машины была при любых условиях одинаковой.

В дальнейшем, в марте 1854 года, исследователи использовали обратную функцию Карно для создания новой шкалы в термодинамике, не зависящей от свойств, активно действующих в системе термометрических тел. Однако, практическое внедрение этой идеи оказалась невозможной. В начале XIX столетия в поисках «абсолютного» устройства для измерения температуры наука вновь вернулась к теории идеального газового термометра, базирующейся на законах веществ Гей-Люссака и Шарля.

Газовый термометр в течение длительного периода времени был единственным методом воспроизведения и закрепления абсолютной температуры. Новые направления в разработке идеальной температурной шкалы основаны на реализации уравнений Стефана ─ Больцмана в бесконтактной термометрии и формулы Гарри (Харри) Найквиста ─ в контактной.

Температура как интенсивное свойство

Рисунок 2. Термодинамическая температура. Автор24 - интернет-биржа студенческих работ

Чтобы определить температуру, как интенсивное свойство любой системы, необходимо наполнить бочку холодной водой из других ведер. Сумма объемов жидкости в ведрах равна объему бочки. Однако сколько бы холодной воды ни поместить в бочку, горячей воды при этом невозможно получить. Такое рассуждение не смешно и не наивно, как может показаться с первого раза, ведь опыт не очевиден сам собой. Это один из важнейших законов природы, к которому люди просто привыкли.

Определение 2

Физика - великое торжество человеческого разума, но она практически всегда развивалась в связи с исследованием кажущихся тривиальностей.

Например, из нескольких коротких палок возможно быстро составить одну длинную, если соединить их встык между собой. Объем и длина – основные свойства системы. Но теперь желательно добавить к ним площадь и массу, которые выступают в качестве примеров экстенсивных свойств. Такие величины постепенно складываются, а на основе закона сложения базируется и метод их дальнейшего измерения.

Замечание 2

Определение экстенсивной величины - это сравнение ее с однородной в отношении концепции величиной.

Измерять температуру необходимо так, как измеряют площадь, длину, объем, массу, нельзя: температуры никогда не складываются. Единица температуры, которой можно сразу измерять любую температурную шкалу, просто невозможна. Температура – яркий пример интенсивных свойств концепции, поэтому к ней закон сложения неприменим.

Пример 1

Например, если разделить железный стержень на несколько частей, температура каждой из них останется прежней, а вот длина, соответственно, изменится.

Непосредственно установить конкретное числовое соотношение между различными температурами бессмысленно и нереально. Поэтому цель ученых измерить температуру без использования метода, пригодным для экстенсивных величин оказалась невыполнимой.

Основы построения термодинамической шкалы температур

Рисунок 3. Абсолютная температура в термодинамике. Автор24 - интернет-биржа студенческих работ

Шкала температур в термодинамике может быть построена принципиально на основании гипотезы Карно, которая предполагает:

  • независимость показателя полезного действия теплового идеального двигателя от самой природы материального тела;
  • самостоятельность от конструкции мотора;
  • зависимость от температур холодильника и нагревателя.

Такое соотношение возможно использовать для построения абсолютной термодинамической температуры. Если изометрическое явление цикла Карно осуществлять при температуре тройной точки воды, то коэффициент объема движущихся веществ изменится. Установленная таким образом шкала называется в физике термодинамической шкалой Кельвина. К сожалению, точность и надежность измерения количества теплоты низкая, что не позволяет реализовать вышеуказанный метод на практике.

Абсолютная температурная шкала может быть представлена в качестве некого термометрического элемента идеального газа. Если измерять давление этого вещества, близкого по свойствам к идеальному, расположенного в герметичном сосуде постоянного объёма, то таким способом ученые определяют температурную шкалу, которая называется идеально-газовой. Преимуществом этой шкалы считается тот факт, что давление идеального газа изменяется линейно с температурой.

В различных тематических изданиях по термодинамике приводятся доказательства того, что измеренная по идеально-газовой шкале температура полностью совпадает с термодинамической температурой. Однако между этими сетками есть принципиальная разница с качественной точки зрения.

Замечание 3

Только термодинамическая шкала является абсолютно самостоятельной и не зависит от свойств термометрического тела.

Как уже было ранее сказано, точное воспроизведение термодинамической шкалы всегда сопряжено с серьезными трудностями. Поэтому изначально необходимо тщательно измерять количество получаемой теплоты в изотермических процессах теплового двигателя.

Дальнейшее воспроизведение термодинамической температурной сетки в диапазоне от 10 до 1337 K возможно посредством газового термометра. При более высоких температурах возникает диффузия реального газа в стенках резервуара, а при температурах в несколько тысяч градусов элементы распадаются на атомы. Для измерения температурных показателей за пределами возможностей газовых термометров в силу вступают специальные методы измерения.

(K) и отсчитывается по абсолютной термодинамической шкале (Кельвина). Абсолютная термодинамическая шкала является основной шкалой в физике и в уравнениях термодинамики.

Молекулярно-кинетическая теория, со своей стороны, связывает абсолютную температуру со средней кинетической энергией поступательного движения молекул идеального газа в условиях термодинамического равновесия:

\frac{1}{2} m\bar{v}^2 = \frac{3}{2}kT,

где m ─ масса молекулы, \bar{v} ─ средняя квадратичная скорость поступательного движения молекул , T ─ абсолютная температура, k ─ постоянная Больцмана .

История

Измерение температуры прошло долгий и трудный путь в своём развитии. Так как температура не может быть измерена непосредственно, то для её измерения использовали свойства термометрических тел, которые находились в функциональной зависимости от температуры. На этой основе были разработаны различные температурные шкалы, которые получили название эмпирических , а измеренная с их помощью температура называется эмпирической. Существенными недостатками эмпирических шкал являются отсутствие их непрерывности и несовпадение значений температур для разных термометрических тел: как между реперными точками, так и за их пределами. Отсутствие непрерывности эмпирических шкал связано с отсутствием в природе вещества, которое способно сохранять свои свойства во всём диапазоне возможных температур. В 1848 г. Томсон (лорд Кельвин) предложил выбрать градус температурной шкалы таким образом, чтобы в её пределах эффективность идеальной тепловой машины была одинаковой. В дальнейшем, в 1854 г. он предложил использовать обратную функцию Карно для построения термодинамической шкалы, не зависящей от свойств термометрических тел. Однако, практическая реализация этой идеи оказалась невозможной. В начале XIX века в поисках «абсолютного» прибора для измерения температуры снова вернулись к идее идеального газового термометра, основанного на законах идеальных газов Гей-Люссака и Шарля. Газовый термометр в течение долгого времени был единственным способом воспроизведения абсолютной температуры. Новые направления в воспроизведении абсолютной температурной шкалы основаны на использовании уравнения Стефана ─ Больцмана в бесконтактной термометрии и уравнения Гарри (Харри) Найквиста ─ в контактной.

Физические основы построения термодинамической шкалы температур.

1. Термодинамическая шкала температур принципиально может быть построена на основании теоремы Карно, которая утверждает, что коэффициент полезного действия идеального теплового двигателя не зависит от природы рабочего тела и конструкции двигателя, и зависит только от температур нагревателя и холодильника.

\eta=\frac{Q_1-Q_2} {Q_1}=\frac{T_1-T_2} {T_1},

где Q_1 – количество теплоты полученной рабочим телом (идеальным газом) от нагревателя, Q_2 – количество теплоты отданное рабочим телом холодильнику, T_1, T_2 – температуры нагревателя и холодильника, соответственно.

Из приведённого выше уравнения следует соотношение:

\frac{ Q_{1} }{ Q_{2} } = \frac{ T_{1} }{ T_{2} }

Это соотношение может быть использовано для построения абсолютной термодинамической температуры . Если один из изотермических процессов цикла Карно Q_3 проводить при температуре тройной точки воды (реперная точка), установленной произвольно ─ T_3=273,16 K, то любая другая температура будет определяться по формуле T=273,16 \frac{Q}{ Q_{3} }. Установленная таким образом температурная шкала называется термодинамической шкалой Кельвина . К сожаленью, точность измерения количества теплоты невысока, что не позволяет реализовать вышеописанный способ на практике.

2. Абсолютная температурная шкала может быть построена, если использовать в качестве термометрического тела идеальный газ. В самом деле, из уравнения Клапейрона вытекает соотношение

T=\frac{pV}{R}

Если измерять давление газа, близкого по свойствам к идеальному, находящегося в герметичном сосуде постоянного объёма, то таким способом можно установить температурую шкалу, которая носит название идеально-газовой. Преимущество этой шкалы состоит в том, что давление идеального газа при V=const изменяется линейно с температурой. Поскольку даже сильно разреженные газы по своим свойствам несколько отличаются от идеального газа, то реализация идеально - газовой шкалы связана с определёнными трудностями.

3. В различных учебниках по термодинамике приводятся доказательства того, что температура, измеренная по идеально-газовой шкале, совпадает с термодинамической температурой. Следует, однако, оговориться: несмотря на то, что численно термодинамическая и идеально-газовая шкалы абсолютно идентичны, с качественной точки зрения между ними есть принципиальная разница. Только термодинамическая шкала является абсолютно независимой от свойств термометрического вещества.

4.Как уже было указано, точное воспроизведение термодинамической шкалы, а также идеально-газовой, сопряжено с серьёзными трудностями. В первом случае необходимо тщательно измерять количество теплоты, которая подводится и отводится в изотермических процессах идеального теплового двигателя. Такого рода измерения неточны. Воспроизедение термодинамической (идеально-газовой) температурной шкалы в диапазоне от 10 до 1337 K возможно с помощью газового термометра. При более высоких температурах заметно проявляется диффузия реального газа сквозь стенки резервуара, а при температурах в несколько тысяч градусов многоатомные газы распадаются на атомы. При ещё больших температурах реальные газы ионизируются и превращаются в плазму, которая не подчиняется уравнению Клапейрона. Наиболее низкая температура, которая может быть измерена газовым термометром, заполненным гелием при низком давлении равна 1K. Для измерения температур за пределами возможностей газовых термометров используют специальные методы измерения. Подробнее см. Термометрия .

Напишите отзыв о статье "Термодинамическая температура"

Примечания

Литература

  • Украинская советская энциклопедия : в 12 томах = Українська радянська енциклопедія (укр.) / За ред. М. Бажана . - 2-ге вид. - К. : Гол. редакція УРЕ, 1974-1985.
  • Малая горная энциклопедия . В 3-х т. = Мала гірнича енциклопедія / (На укр. яз.). Под ред. В. С. Белецкого . - Донецк: Донбасс, 2004. - ISBN 966-7804-14-3 .
  • Белоконь Н. И. Термодинамика. - М .: Госэнергоиздат, 1954. - 417 с.
  • Белоконь Н. И. Основные принципы термодинамики. - М .: Недра, 1968. - 112 с.
  • Кириллин В.А. Техническая термодинамика. - М .: Энергоатомиздат, 1983. - 414 с.
  • Вукалович М. П., Новиков И. И. Техническая термодинамика. - М .: Энергия, 1968. - 497 с.
  • Сивухин Д. В. Общий курс физики. Т. II. Термодинамика и молекулярная физика. - М .: ФИЗМАТЛИТ, 2005. - 544 с. - ISBN 5-9221-0601-5 .
  • Базаров И. П. Термодинамика. - М .: Высшая школа, 1991. - 376 с. - ISBN 5-06-000626-3 .
  • Різак В.,Різак І., Рудавський Е. Кріогенна фізика і техніка. - К. : Наукова думка, 2006. - 512 с. - ISBN 966-00-480-X.

Отрывок, характеризующий Термодинамическая температура

Пьер оглядывался вокруг себя налившимися кровью глазами и не отвечал. Вероятно, лицо его показалось очень страшно, потому что офицер что то шепотом сказал, и еще четыре улана отделились от команды и стали по обеим сторонам Пьера.
– Parlez vous francais? – повторил ему вопрос офицер, держась вдали от него. – Faites venir l"interprete. [Позовите переводчика.] – Из за рядов выехал маленький человечек в штатском русском платье. Пьер по одеянию и говору его тотчас же узнал в нем француза одного из московских магазинов.
– Il n"a pas l"air d"un homme du peuple, [Он не похож на простолюдина,] – сказал переводчик, оглядев Пьера.
– Oh, oh! ca m"a bien l"air d"un des incendiaires, – смазал офицер. – Demandez lui ce qu"il est? [О, о! он очень похож на поджигателя. Спросите его, кто он?] – прибавил он.
– Ти кто? – спросил переводчик. – Ти должно отвечать начальство, – сказал он.
– Je ne vous dirai pas qui je suis. Je suis votre prisonnier. Emmenez moi, [Я не скажу вам, кто я. Я ваш пленный. Уводите меня,] – вдруг по французски сказал Пьер.
– Ah, Ah! – проговорил офицер, нахмурившись. – Marchons!
Около улан собралась толпа. Ближе всех к Пьеру стояла рябая баба с девочкою; когда объезд тронулся, она подвинулась вперед.
– Куда же это ведут тебя, голубчик ты мой? – сказала она. – Девочку то, девочку то куда я дену, коли она не ихняя! – говорила баба.
– Qu"est ce qu"elle veut cette femme? [Чего ей нужно?] – спросил офицер.
Пьер был как пьяный. Восторженное состояние его еще усилилось при виде девочки, которую он спас.
– Ce qu"elle dit? – проговорил он. – Elle m"apporte ma fille que je viens de sauver des flammes, – проговорил он. – Adieu! [Чего ей нужно? Она несет дочь мою, которую я спас из огня. Прощай!] – и он, сам не зная, как вырвалась у него эта бесцельная ложь, решительным, торжественным шагом пошел между французами.
Разъезд французов был один из тех, которые были посланы по распоряжению Дюронеля по разным улицам Москвы для пресечения мародерства и в особенности для поимки поджигателей, которые, по общему, в тот день проявившемуся, мнению у французов высших чинов, были причиною пожаров. Объехав несколько улиц, разъезд забрал еще человек пять подозрительных русских, одного лавочника, двух семинаристов, мужика и дворового человека и нескольких мародеров. Но из всех подозрительных людей подозрительнее всех казался Пьер. Когда их всех привели на ночлег в большой дом на Зубовском валу, в котором была учреждена гауптвахта, то Пьера под строгим караулом поместили отдельно.

В Петербурге в это время в высших кругах, с большим жаром чем когда нибудь, шла сложная борьба партий Румянцева, французов, Марии Феодоровны, цесаревича и других, заглушаемая, как всегда, трубением придворных трутней. Но спокойная, роскошная, озабоченная только призраками, отражениями жизни, петербургская жизнь шла по старому; и из за хода этой жизни надо было делать большие усилия, чтобы сознавать опасность и то трудное положение, в котором находился русский народ. Те же были выходы, балы, тот же французский театр, те же интересы дворов, те же интересы службы и интриги. Только в самых высших кругах делались усилия для того, чтобы напоминать трудность настоящего положения. Рассказывалось шепотом о том, как противоположно одна другой поступили, в столь трудных обстоятельствах, обе императрицы. Императрица Мария Феодоровна, озабоченная благосостоянием подведомственных ей богоугодных и воспитательных учреждений, сделала распоряжение об отправке всех институтов в Казань, и вещи этих заведений уже были уложены. Императрица же Елизавета Алексеевна на вопрос о том, какие ей угодно сделать распоряжения, с свойственным ей русским патриотизмом изволила ответить, что о государственных учреждениях она не может делать распоряжений, так как это касается государя; о том же, что лично зависит от нее, она изволила сказать, что она последняя выедет из Петербурга.
У Анны Павловны 26 го августа, в самый день Бородинского сражения, был вечер, цветком которого должно было быть чтение письма преосвященного, написанного при посылке государю образа преподобного угодника Сергия. Письмо это почиталось образцом патриотического духовного красноречия. Прочесть его должен был сам князь Василий, славившийся своим искусством чтения. (Он же читывал и у императрицы.) Искусство чтения считалось в том, чтобы громко, певуче, между отчаянным завыванием и нежным ропотом переливать слова, совершенно независимо от их значения, так что совершенно случайно на одно слово попадало завывание, на другие – ропот. Чтение это, как и все вечера Анны Павловны, имело политическое значение. На этом вечере должно было быть несколько важных лиц, которых надо было устыдить за их поездки во французский театр и воодушевить к патриотическому настроению. Уже довольно много собралось народа, но Анна Павловна еще не видела в гостиной всех тех, кого нужно было, и потому, не приступая еще к чтению, заводила общие разговоры.
Новостью дня в этот день в Петербурге была болезнь графини Безуховой. Графиня несколько дней тому назад неожиданно заболела, пропустила несколько собраний, которых она была украшением, и слышно было, что она никого не принимает и что вместо знаменитых петербургских докторов, обыкновенно лечивших ее, она вверилась какому то итальянскому доктору, лечившему ее каким то новым и необыкновенным способом.
Все очень хорошо знали, что болезнь прелестной графини происходила от неудобства выходить замуж сразу за двух мужей и что лечение итальянца состояло в устранении этого неудобства; но в присутствии Анны Павловны не только никто не смел думать об этом, но как будто никто и не знал этого.
– On dit que la pauvre comtesse est tres mal. Le medecin dit que c"est l"angine pectorale. [Говорят, что бедная графиня очень плоха. Доктор сказал, что это грудная болезнь.]
– L"angine? Oh, c"est une maladie terrible! [Грудная болезнь? О, это ужасная болезнь!]
– On dit que les rivaux se sont reconcilies grace a l"angine… [Говорят, что соперники примирились благодаря этой болезни.]
Слово angine повторялось с большим удовольствием.
– Le vieux comte est touchant a ce qu"on dit. Il a pleure comme un enfant quand le medecin lui a dit que le cas etait dangereux. [Старый граф очень трогателен, говорят. Он заплакал, как дитя, когда доктор сказал, что случай опасный.]
– Oh, ce serait une perte terrible. C"est une femme ravissante. [О, это была бы большая потеря. Такая прелестная женщина.]
– Vous parlez de la pauvre comtesse, – сказала, подходя, Анна Павловна. – J"ai envoye savoir de ses nouvelles. On m"a dit qu"elle allait un peu mieux. Oh, sans doute, c"est la plus charmante femme du monde, – сказала Анна Павловна с улыбкой над своей восторженностью. – Nous appartenons a des camps differents, mais cela ne m"empeche pas de l"estimer, comme elle le merite. Elle est bien malheureuse, [Вы говорите про бедную графиню… Я посылала узнавать о ее здоровье. Мне сказали, что ей немного лучше. О, без сомнения, это прелестнейшая женщина в мире. Мы принадлежим к различным лагерям, но это не мешает мне уважать ее по ее заслугам. Она так несчастна.] – прибавила Анна Павловна.
Полагая, что этими словами Анна Павловна слегка приподнимала завесу тайны над болезнью графини, один неосторожный молодой человек позволил себе выразить удивление в том, что не призваны известные врачи, а лечит графиню шарлатан, который может дать опасные средства.
– Vos informations peuvent etre meilleures que les miennes, – вдруг ядовито напустилась Анна Павловна на неопытного молодого человека. – Mais je sais de bonne source que ce medecin est un homme tres savant et tres habile. C"est le medecin intime de la Reine d"Espagne. [Ваши известия могут быть вернее моих… но я из хороших источников знаю, что этот доктор очень ученый и искусный человек. Это лейб медик королевы испанской.] – И таким образом уничтожив молодого человека, Анна Павловна обратилась к Билибину, который в другом кружке, подобрав кожу и, видимо, сбираясь распустить ее, чтобы сказать un mot, говорил об австрийцах.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!