Мода и стиль. Красота и здоровье. Дом. Он и ты

Что наблюдается при дифракции. Явление дифракции

Дифракция и дисперсия - такие красивые и похожие слова, которые звучат как музыка для ушей физика! Как все уже догадались, сегодня мы говорим уже не о геометрической оптике, а о явлениях, обусловленных именно волновой природой света .

Дисперсия света

Итак, в чем заключается явление дисперсии света? В мы рассмотрели закон преломления света. Тогда мы не задумывались, а точнее - не вспоминали о том, что свет (электромагнитная волна) имеет определенную длину. Давайте вспомним:

Свет – электромагнитная волна. Видимый свет – это волны, имеющие длину в интервале от 380 до 770 нанометров.

Так вот, еще старина Ньютон заметил, что показатель преломления зависит от длины волны. Другими словами, красный свет, падая на поверхность и преломляясь, отклонится на другой угол, нежели желтый, зеленый и так далее. Эта зависимость и называется дисперсией .

Пропуская белый свет через призму, можно получить спектр, состоящий из всех цветов радуги. Это явление напрямую объясняется дисперсией света. Раз показатель преломления зависит от длины волны, значит, он зависит и от частоты. Соответственно, скорость света для разных длин волн в веществе также будет различна

Дисперсия света – зависимость скорости света в веществе от частоты.

Где применяется дисперсия света? Да повсюду! Это не только красивое слово, но и красивое явление. Дисперсия света в быту, природе, технике и искусстве. Вот, например, дисперсия красуется на обложке альбома группы Pink Floyd.

Дифракция света

Перед дифракцией нужно сказать про ее "подругу" - интерференцию . Ведь интерференция и дифракция света - это явления, которые наблюдаются одновременно.

Интерференция света – это когда две когерентные световые волны при наложении усиливают друг друга или наоборот ослабляют.

Волны является когерентными , если разность их фаз постоянна во времени, а при сложении получается волна той же частоты. Будет результирующая волна усилена (интерференционный максимум) или наоборот ослаблена (интерференционный минимум) - зависит от разности фаз колебаний. Максимумы и минимумы при интерференции чередуются, образуя интерференционную картину.

Дифракция света – еще одно проявления волновых свойств. Казалось бы, луч света всегда должен распространяться по прямой. Но нет! Встречая препятствие, свет отклоняется от первоначального направления как бы огибая преграду. Какие условия необходимы для наблюдения дифракции света? Собственно, это явление наблюдается на предметах любых размеров, но на больших предметах его наблюдать трудно и почти невозможно. Лучше всего это удается сделать на препятствиях, сопоставимых по размерам с длиной волны. В случае со светом - это очень маленькие препятствия.

Дифракцией света называется явление отклонения света от прямолинейного направления при прохождении вблизи преграды.

Дифракция проявляется не только для света, но и для других волн. Например, для звуковых. Или для волн на море. Отличный пример дифракции – это то, как мы слышим песню группы Пинк Флойд из проезжающей мимо машины, когда сами стоим за углом. Если бы звуковая волна распространялась прямо, она бы просто не достигла наших ушей, и мы бы стояли в полной тишине. Согласитесь, скучно. Зато с дифракцией гораздо веселее.

Для наблюдения явления дифракции используется специальный прибор – дифракционная решетка . Дифракционная решетка представляет собой систему препятствий, которые по размеру сопоставимы с длиной волны. Это специальные параллельные штрихи, выгравированные на поверхности металлической или стеклянной пластины. Расстояние между краями соседних щелей решетки называется периодом решетки или ее постоянной.

Что происходит со светом при прохождении дифракционной решетки? Попадая на решетку и встречая препятствие, световая волна проходит через систему прозрачных и непрозрачных областей, в результате чего разбивается на отдельные пучки когерентного света, которые после дифракции интерферируют друг с другом. Каждая длина волны отклоняется при этом на определенный угол, и происходит разложение света в спектр. В результате мы наблюдаем дифракцию света на решетке

Формула дифракционной решетки:

Здесь d – период решетки, фи – угол отклонения света после прохождения решетки, k – порядок дифракционного максимума, лямбда – длина волны.

Сегодня мы узнали, в чем чем заключается явления дифракции и дисперсии света. В курсе оптики очень сильно распространены задачи по теме интерференция, дисперсия и дифракция света. Авторы учебников очень любят подобные задачи. Чего нельзя сказать о тех, кому приходится их решать. Если Вы хотите легко справиться с заданиями, разобраться в теме, а заодно и сэкономить время, обратитесь к . Они помогут Вам справиться с любой задачей!

Наряду с интерференцией другим примером общего для всех волновых процессов явления может служить дифракция - огибание волнами препятствий. Для световых волн дифракция проявляется в отклонении от прямолинейного распространения и загибании света в область геометрической тени.

Характерной особенностью дифракционных явлений в оптике оказывается то, что здесь, как правило, длина волны света почти всегда много меньше размеров преград на пути световых волн. Поэтому наблюдать дифракцию света можно только на достаточно больших расстояниях от преграды. Проявление дифракции состоит в том, что распределение освещенности отличается от простой картины, предсказываемой геометрической оптикой на основе прямолинейного распространения света.

Принцип Гюйгенса-Френеля. Строгий расчет дифракционной картины представляет собой очень сложную математическую задачу. Но в некоторых практически важных случаях достаточно

Рис. 199. К расчету дифракции на основе принципа Гюйгенса-Френеля

хорошее приближение дает упрощенный подход, основанный на использовании принципа Гюйгенса-Френеля.

Пусть поверхность представляет собой положение волновой поверхности в некоторый момент времени (рис. 199).

Для того чтобы определить вызванные волной колебания в некоторой точке Р, нужно, по Френелю, определить колебания, вызываемые в этой точке отдельными вторичными волнами, приходящими в нее от отдельных элементов поверхности и затем сложить эти колебания с учетом их амплитуд и фаз. При этом следует считать, что в точке Р сказывается влияние только той части волновой поверхности которая не загораживается каким-либо препятствием.

Зоны Френеля. Проиллюстрируем применение принципа Гюйгенса-Френеля на следующем примере. Пусть на непрозрачную преграду с круглым отверстием падает слева плоская монохроматическая волна (рис. 200). Такую волну можно получить, например, от точечного источника монохроматического света, удаленного на бесконечность или помещенного в фокус собирающей линзы большого диаметра.

Рис. 200. Падение плоской монохроматической волны на преграду с круглым отверстием

Рис. 201. Построение зон Френеля

Будем интересоваться освещенностью экрана в точке Р, находящейся на оси симметрии.

Для учета интерференции вторичных волн Френель предложил мысленно разбить волновую поверхность падающей волны в месте расположения преграды на кольцевые зоны (зоны Френеля) по следующему правилу: расстояния от краев соседних зон до точки Р (рис. 201) должны отличаться на половину длины волны, т. е.

Если смотреть на волновую поверхность из точки Р, то зоны Френеля будут выглядеть так, как показано на рис. 202. Из рис. 201 легко найти радиусы зон Френеля:

Видно, что радиус зоны пропорционален если При выполнении этого условия площади зон Френеля можно считать одинаковыми. Результат интерференции вторичных волн в точке Р, как мы увидим ниже, определяется тем, сколько зон Френеля открывает круглое отверстие на волновой поверхности.

Рис. 202. Зоны Френеля

Дифракция Френеля на круглом отверстии. Предположим, что отверстие в преграде представляет собой диафрагму, диаметр которой можно изменять. Пусть сначала радиус отверстия много меньше радиуса первой зоны Френеля. Тогда можно считать, что колебания от всех точек волновой поверхности в этом маленьком отверстии приходят в точку Р практически в одинаковой фазе. Изобразим колебание поля в точке Р, вызванное этой вторичной волной, с помощью векторной диаграммы (рис. 203а). Этому колебанию на ней сопоставляется вектор который вращается с угловой скоростью , равной циклической частоте падающей волны, в направлении против часовой стрелки. Увеличим отверстие диафрагмы еще немного, так чтобы площадь его удвоилась. Колебания, приходящие в точку Р от вновь открытого участка волновой поверхности, несколько отстают по фазе и изображаются на диаграмме вектором Длина этого вектора равна длине вектора так как равны между собой площади соответствующих им участков волновой поверхности. Продолжая увеличивать отверстие диафрагмы, будем откладывать на диаграмме векторы, соответствующие приходящим в точку Р колебаниям от вновь открываемых участков волновой поверхности. Колебаниям, приходящим в Я от участка, прилегающего к границе первой зоны Френеля, будет соответствовать вектор повернутый относительно на так как, согласно определению зон Френеля, разность хода соответствующих им вторичных волн равна

Рис. 203. Расчет амплитуды результирующего колебания в точке Р с помощью векторных диаграмм: а - в отверстии укладывается одна зона Френеля; - две зоны Френеля

Результирующее колебание в точке Р, создаваемое волной, которая прошла через круглое отверстие, совпадающее с первой зоной Френеля, изображается вектором (рис. 203а). Будем увеличивать отверстие диафрагмы дальше. Когда на нем будут умещаться две первые зоны Френеля, векторная диаграмма колебаний в точке Р примет вид, изображенный на рис. 2036. При строгом равенстве амплитуд складываемых колебаний амплитуда результирующего колебания должна была бы равняться нулю, т. е. вторичные волны при двух открытых зонах Френеля полностью гасили бы друг друга в точке Р. Однако действие даже одинаковых по площади участков волновой поверхности в точке Р несколько убывает по мере увеличения угла между направлением на точку Р и нормалью к волновой поверхности (см. рис. 199). Поэтому в действительности амплитуда имеет конечное, хотя и очень малое значение.

Таким образом, освещенность экрана в точке Р, пропорциональная квадрату амплитуды результирующего колебания, будет по мере увеличения отверстия круглой диафрагмы меняться немонотонно. Пока открывается первая зона Френеля, освещенность в Р увеличивается и становится максимальной при полностью открытой первой зоне. По мере открывания второй зоны Френеля освещенность убывает и при полностью открытой второй зоне уменьшается почти до нуля. Затем освещенность будет увеличиваться снова, и т. д.

Эти на первый взгляд парадоксальные результаты, предсказываемые на основе принципа Гюйгенса-Френеля, хорошо согласуются с экспериментом. Подчеркнем, что они находятся в вопиющем противоречии с предсказаниями геометрической оптики, согласно которой при падении плоской волны освещенность в точке Р, лежащей на оси круглого отверстия, не зависит от диаметра отверстия.

Дифракция Френеля на круглом диске. Пятно Араго-Пуассона. Наиболее неожиданным в полученных выше результатах является, пожалуй, то, что при двух открытых зонах Френеля (и вообще при небольшом четном числе открытых зон) освещенность в точке Р близка к нулю. Не менее неожиданным является то, что в точке Р позади непрозрачного круглого экрана, расположенного на месте преграды с отверстием, освещенность не будет равна нулю, как это следовало бы из геометрической оптики. Если при этом непрозрачный круглый экран перекрывает лишь несколько первых зон Френеля, то в точке Р освещенность будет почти такой же, как и без экрана.

В этом можно убедиться, если рассматривать вектор А, изображающий колебания напряженности поля в точке Р при полностью открытой волновой поверхности, как сумму двух векторов, один из которых изображает колебания от открытого участка волновой поверхности, а другой - от тех зон Френеля, которые перекрыты экраном. В центре геометрической тени оказывается свет - так называемое пятно Араго-Пуассона.

Это предсказание теории Френеля произвело сильное впечатление на его современников. В 1818 г. член конкурсного комитета Французской академии С. Пуассон, рассматривавший представленный на премию мемуар Френеля, пришел к выводу о том, что в центре тени маленького диска должно находиться светлое пятно, но счел этот вывод столь абсурдным, что выдвинул его как возражение против волновой теории света, развивавшейся Френелем. Однако другой член того же комитета Араго выполнил эксперимент, показавший, что это удивительное предсказание правильно.

Расстояния, на которых сказывается дифракция. Теперь не представляет труда оценить те условия наблюдения, при которых дифракционные явления становятся существенными и картина распределения освещенности на экране заметно отличается от предсказываемой геометрической оптикой. По геометрической оптике распределение освещенности на экране должно соответствовать форме отверстия, так что освещенность экрана равна нулю в области геометрической тени, а в точке Р такая же, как и в отсутствие преграды. Но мы видели, что в случае, когда на отверстии укладывается лишь несколько зон Френеля, освещенность в точке Р совсем иная. Это дает возможность оценить то расстояние от отверстия до точки наблюдения, на котором именно дифракционные явления определяют наблюдаемую картину. Для этого в формуле (2) следует считать к положить равным размеру отверстия (или преграды) В результате находим

Дифракция Фраунгофера. Но можно осуществить такие условия наблюдения дифракции света, при которых возможен полный расчет распределения освещенности в дифракционной картине на экране.

Пусть плоская монохроматическая волна от бесконечно удаленного точечного источника падает на экран с отверстием, а дифракционная картина наблюдается на экране в фокальной плоскости линзы (рис. 204). Так как в каждой точке фокальной плоскости линзы, например Р на рис. 204, сходятся лучи, которые до линзы были параллельны между собой, то наблюдаемая здесь картина называется дифракцией в параллельных лучах. Как мы увидим в дальнейшем, линза не вносит дополнительной разности хода между параллельными до линзы лучами. Поэтому

Рис. 204. Наблюдение дифракции в параллельных лучах

складывающиеся в точке Р колебания имеют такую же разность фаз, как и до линзы на плоскости, перпендикулярной к этим лучам. Такая схема наблюдения дифракции была предложена И. Фраунгофером.

Пусть отверстие в экране представляет собой щель шириной (рис. 205), которую считаем бесконечно протяженной в направлении оси у.

Рис. 205. Наблюдение дифракции от щели с параллельными краями

Построенные по принципу Гюйгенса волновые поверхности позади щели представляют собой цилиндрические поверхности с образующей, параллельной краям щели (рис. 206). Так как волновая поверхность в направлении оси у не ограничена, то дифракционных эффектов в этом направлении быть не может.

Поэтому весь прошедший через линзу и попадающий на экран дифрагированный свет будет сосредоточен вдоль линии лежащей в плоскости Вместо изображения точечного источника в фокальной плоскости линзы, которое было бы в отсутствие щели, получается дифракционная картина, вытянутая вдоль линии

Рис. 206. Волновые поверхности, построенные по принципу Гюйгенса

Если создающий падающую волну точечный источник сместить вдоль оси у так, чтобы падающие на щель параллельные лучи образовали некоторый угол с осью то дифракционная картина на экране, не изменяя своего вида, сместится из положения на такой же угол. Поэтому при замене точечного источника света на тонкую светящуюся линию, параллельную оси у, каждый ее точечный элемент будет создавать свою дифракционную картину, параллельную а вся дифракционная картина на экране будет состоять из параллельных светлых и темных полос, как показано на рис. 205. Для ее нахождения достаточно рассмотреть только плоскость

Согласно принципу Гюйгенса-Френеля волновую поверхность падающей волны в щели на оси х следует разбить на столь малые участки, чтобы колебания в точке наблюдения Р, вызываемые вторичными волнами от всех точек одного участка, имели почти одинаковую фазу. Колебания в точке Р, вызываемые вторичными волнами, распространяющимися под углом от разных участков (рис. 207), следует просуммировать с учетом сдвигов по фазе. Это удобно сделать с помощью векторной диаграммы, построенной на рис. 208.

Рис. 207. К расчету суммарного колебания в точке Р

Вектор изображает колебания, приходящие в точку Р от участка лежащего вблизи нижнего края щели. Вектор изображающий колебания от соседнего участка повернут относительно на некоторый небольшой угол. Вектор изображающий колебания от последнего участка лежащего у верхнего края щели, повернут относительно вектора на угол соответствующий разности хода (рис. 207) между лучами, приходящими от краев щели. Чтобы найти сдвиг по фазе между колебаниями в точке Р, вызванными волнами с разностью хода следует учесть, что сдвиг по фазе равен при разности хода X:

Рис. 208. Сложение колебаний с помощью векторной диаграммы

Освещенность экрана в точке Р, пропорциональная квадрату амплитуды колебаний, связана с освещенностью в точке О, согласно (5), следующим соотношением:

где дается формулой (4). Распределение освещенности на экране при дифракции плоской волны на длинной щели показано на рис. 209. Вместо бесконечно узкой линии, которая получалась бы в фокальной плоскости линзы согласно законам геометрической оптики, на экране получаются дифракционные полосы, параллельные щели. Рядом с яркой центральной полосой будут слабые побочные полосы, отделенные друг от друга полной темнотой, причем ширина побочных полос вдвое меньше ширины центральной.

Рис. 209. Распределение освещенности на экране при дифракции плоской волны на щели

Освещенность в центре первой побочной полосы, как видно из формулы (6), почти в 25 раз меньше освещенности в центре картины. Освещенность обращается в нуль тогда, когда аргумент синуса в (6) кратен Это соответствует углам дифракции 0, При которых, как видно из (4),

Отметим, что положение минимумов освещенности легко найти и без помощи формулы (6). Для этого достаточно только сообразить, что минимумам соответствует разность хода I между крайними лучами (рис. 207), равная целому числу длин волн X. Действительно, если разность хода I равна, например, X, то всю щель можно разбить на пары одинаковых участков, отстоящих друг от друга на Разность хода вторичных волн от каждой такой пары равна и эти волны в точке наблюдения гасят друг друга.

Чем уже щель, тем шире дифракционные полосы. Из формулы (7) видно, что при уменьшении ширины щели до размеров порядка длины волны X центральная полоса расплывается на весь экран.

В чем заключаются особенности дифракционных явлений в оптике?

Сформулируйте принцип Гюйгенса-Френеля. Как рассчитать колебания в некоторой точке, вызываемые проходящей через отверстие в экране световой волной?

Что такое зоны Френеля? Как осуществляется их построение?

Докажите, опираясь на формулу (2), что площади зон Френеля одинаковы.

Как объяснить периодические изменения освещенности в центре дифракционной картины от круглого отверстия при монотонном изменении диаметра отверстия или расстояния от отверстия до экрана?

Как оценить расстояние от препятствия (экрана или отверстия в нем) до точки наблюдения, - при котором становятся заметными дифракционные явления?

Чем отличаются условия наблюдения дифракции Фраунгофера и дифракции Френеля?

Покажите, что дифракция Френеля и дифракция Фраунгофера не представляют собой разные физические явления, а соответствуют разным условиям наблюдения одного и того же явления. Сравните дифракцию Френеля при с дифракцией Фраунгофера.

Как изменятся ширина центральной полосы при дифракции Фраунгофера на щели и освещенность в ее середине, если ширину щели увеличить вдвое? Изменится ли при этом отношение освещенностей в побочных и центральной дифракционных полосах?

В ряде случаев, в особенности при изготовлении оптических систем , разрешающая способность ограничивается не дифракцией, а аберрациями , как правило, возрастающими при увеличении диаметра объектива. Отсюда происходит известное фотографам явление увеличения до определённых пределов качества изображения при диафрагмировании объектива.

При распространении излучения в оптически неоднородных средах дифракционные эффекты заметно проявляются при размерах неоднородностей, сравнимых с длиной волны. При размерах неоднородностей, существенно превышающих длину волны (на 3-4 порядка и более), явлением дифракции, как правило, можно пренебречь. В последнем случае распространение волн с высокой степенью точности описывается законами геометрической оптики . С другой стороны, если размер неоднородностей среды сравним с длиной волны, в таком случае дифракция проявляет себя в виде эффекта рассеяния волн.

Изначально явление дифракции трактовалось как огибание волной препятствия , то есть проникновение волны в область геометрической тени. С точки зрения современной науки определение дифракции как огибания светом препятствия признается недостаточным (слишком узким) и не вполне адекватным. Так, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн (в случае учёта их пространственного ограничения) в неоднородных средах.

Дифракция волн может проявляться:

  • в преобразовании пространственной структуры волн. В одних случаях такое преобразование можно рассматривать как «огибание» волнами препятствий, в других случаях - как расширение угла распространения волновых пучков или их отклонение в определённом направлении;
  • в разложении волн по их частотному спектру ;
  • в преобразовании поляризации волн;
  • в изменении фазовой структуры волн.

Наиболее хорошо изучена дифракция электромагнитных (в частности, оптических) и акустических волн, а также гравитационно-капиллярных волн (волны на поверхности жидкости).

Энциклопедичный YouTube

  • 1 / 5

    В явлении дифракции важную роль играют исходные размеры области волнового поля и исходная структура волнового поля, которая подвержена существенной трансформации в случае, если элементы структуры волнового поля сравнимы с длиной волны или меньше её.

    Например, ограниченный в пространстве волновой пучок имеет свойство «расходиться» («расплываться») в пространстве по мере распространения даже в однородной среде. Данное явление не описывается законами геометрической оптики и относится к дифракционным явлениям (дифракционная расходимость, дифракционное расплывание волнового пучка).

    Исходное ограничение волнового поля в пространстве и его определённая структура могут возникнуть не только за счёт присутствия поглощающих или отражающих элементов, но и, например, при порождении (генерации, излучении) данного волнового поля.

    Следует заметить, что в средах, в которых скорость волны плавно (по сравнению с длиной волны) меняется от точки к точке, распространение волнового пучка является криволинейным (см. градиентная оптика , градиентные волноводы, мираж). При этом волна также может огибать препятствие. Однако такое криволинейное распространение волны может быть описано с помощью уравнений геометрической оптики, и это явление не относится к дифракции.

    Вместе с тем, во многих случаях дифракция может быть и не связана с огибанием препятствия (но всегда обусловлена его наличием). Такова, например, дифракция на непоглощающих (прозрачных), так называемых фазовых, структурах.

    Поскольку, с одной стороны, явление дифракции света оказалось невозможным объяснить с точки зрения лучевой модели, то есть с точки зрения геометрической оптики, а с другой стороны, дифракция получила исчерпывающее объяснение в рамках волновой теории, то наблюдается тенденция понимать её проявление как любое отступление от законов геометрической оптики .

    При этом следует заметить, что некоторые волновые явления не описываются законами геометрической оптики и, в то же время, не относятся к дифракции. К таким типично волновым явлениям относится, например, вращение плоскости поляризации световой волны в оптически активной среде , которое дифракцией не является.

    Вместе с тем, единственным результатом так называемой коллинеарной дифракции с преобразованием оптических мод может быть именно поворот плоскости поляризации , в то время как дифрагированный волновой пучок сохраняет исходное направление распространения. Такой тип дифракции может быть реализован, например, как дифракция света на ультразвуке в двулучепреломляющих кристаллах, при которой волновые векторы оптической и акустической волн параллельны друг другу.

    Ещё один пример: с точки зрения геометрической оптики невозможно объяснить явления, имеющие место в так называемых связанных волноводах, хотя эти явления также не относят к дифракции (волновые явления, связанные с «вытекающими» полями).

    Раздел оптики «Оптика кристаллов», имеющей дело с оптической анизотропией среды, также имеет лишь косвенное отношение к проблеме дифракции. В то же самое время он нуждается в корректировке используемых представлений геометрической оптики. Это связано с различием в понятии луча (как направления распространения света) и распространения волнового фронта (то есть направления нормали к нему)

    Отступление от прямолинейности распространения света наблюдается также в сильных полях тяготения. Экспериментально подтверждено, что свет, проходящий вблизи массивного объекта, например, вблизи звезды, отклоняется в её поле тяготения в сторону звезды. Таким образом, и в данном случае можно говорить об «огибании» световой волной препятствия. Однако, это явление также не относится к дифракции.

    Частные случаи дифракции

    Исторически в проблеме дифракции сначала рассматривались два крайних случая, связанных с ограничением препятствием (экраном с дыркой) сферической волны и это была дифракция Френеля , либо плоской волны на щели или системе отверстий - дифракция Фраунгофера

    Дифракция на щели

    В качестве примера рассмотрим дифракционную картину, возникающую при прохождении света через щель в непрозрачном экране. Мы найдём интенсивность света в зависимости от угла в этом случае. Для написания исходного уравнения используем принцип Гюйгенса .

    Рассмотрим монохроматическую плоскую волну с амплитудой Ψ ′ {\displaystyle \Psi ^{\prime }} с длиной волны λ {\displaystyle \lambda } , падающую на экран с щелью ширины a {\displaystyle a} .

    Ψ = ∫ s l i t i r λ Ψ ′ e − i k r d s l i t {\displaystyle \Psi =\int \limits _{slit}{\frac {i}{r\lambda }}\Psi ^{\prime }e^{-ikr}\,dslit}

    пусть (x′,y′,0) - точка внутри разреза, по которому мы интегрируем. Мы хотим узнать интенсивность в точке (x,0,z). Щель имеет конечный размер в x направлении (от x ′ = − a / 2 {\displaystyle x^{\prime }=-a/2} до + a / 2 {\displaystyle +a/2} ), и бесконечна в y направлении ([ y ′ = − ∞ {\displaystyle y"=-\infty } , ∞ {\displaystyle \infty } ]).

    Расстояние r от щели определяется как:

    r = (x − x ′) 2 + y ′ 2 + z 2 {\displaystyle r={\sqrt {\left(x-x^{\prime }\right)^{2}+y^{\prime 2}+z^{2}}}} r = z (1 + (x − x ′) 2 + y ′ 2 z 2) 1 2 {\displaystyle r=z\left(1+{\frac {\left(x-x^{\prime }\right)^{2}+y^{\prime 2}}{z^{2}}}\right)^{\frac {1}{2}}}

    Дифракция на отверстии

    Дифракция звука и ультразвуковая локация

    Дифракция радиоволн и радиолокация

    Исследованием дифракции радиоволн занимается геометрическая теория дифракции

    Дифракционная решётка

    Дифракционная решётка - оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори , который использовал в качестве решётки птичьи перья.

    Дифракция рентгеновских лучей

    Дифракция света на ультразвуке

    Одним из наглядных примеров дифракции света на ультразвуке является дифракция света на ультразвуке в жидкости. В одной из постановок такого эксперимента в оптически-прозрачной ванночке в форме прямоугольного параллелепипеда с оптически-прозрачной жидкостью с помощью пластинки из пьезоматериала на частоте ультразвука возбуждается

    Распространение луча в оптически однородной среде — прямолинейное, однако в природе существует ряд явлений, где можно наблюдать отклонение от этого условия.

    Дифракция – явление огибания световыми волнами встреченных препятствий. В школьной физике изучаются две дифракционные системы (системы, при прохождении луча в которых наблюдается дифракция):

    • дифракция на щели (прямоугольном отверстии)
    • дифракция на решётке (набор равноотстоящих друг от друга щелей)

    — дифракция на прямоугольном отверстии (рис. 1).

    Рис. 1. Дифракция на щели

    Пусть дана плоскость со щелью, шириной , на которую под прямым углом падает пучок света А. Большинство света проходит на экран, однако часть лучей дифрагирует на краях щели (т.е. отклоняется от своего первоначального направления). Далее эти лучи друг с другом с образованием дифракционной картины на экране (чередование ярких и тёмных областей). Рассмотрение законов интерференции достаточно сложно, поэтому ограничимся основными выводами.

    Полученная дифракционная картина на экране состоит из чередующихся областей с дифракционными максимумами (максимально светлыми областями) и дифракционными минимумами (максимально тёмными областями). Эта картина симметрична относительно центрального светового пучка. Положение максимумов и минимумов описывается углом относительно вертикали, под которым они видны, и зависит от размера щели и длины волны падающего излучения. Положение этих областей можно найти используя ряд соотношений:

    • для дифракционных максимумов

    Нулевым максимумом дифракции называется центральная точка на экране под щелью (рис. 1).

    • для дифракционных минимумов

    Вывод : по условиям задачи необходимо выяснить: максимум или минимум дифракции необходимо найти и использовать соответствующее соотношение (1) или (2).

    Дифракция на дифракционной решётке.

    Дифракционной решёткой называется система, состоящая из чередующихся щелей, равноотстоящих друг от друга (рис. 2).

    Рис. 2. Дифракционная решётка (лучи)

    Так же, как и для щели, на экране после дифракционной решётки будет наблюдаться дифракционная картина: чередование светлых и тёмных областей. Вся картина есть результат интерференции световых лучей друг с другом, однако на картину от одной щели будет воздействовать лучи от других щелей. Тогда дифракционная картина должна зависеть от количества щелей, их размеров и близкорасположенности.

    Введём новое понятие — постоянная дифракционной решётки :

    Тогда положения максимумов и минимумов дифракции:

    • для главных дифракционных максимумов (рис. 3)

    Л 3 -4

    Дифракция света

    Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле – любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшое отверстие в экранах и т.д.

    Между интерференцией и дифракцией нет существенного физического различия. Оба явления заключаются в перераспределении светового потока в результате наложения (суперпозиции) волн. По историческим причинам отклонение от закона независимости световых пучков, возникающее в результате суперпозиции когерентных волн, принято называть интерференцией волн. Отклонение от закона прямолинейного распространения света, в свою очередь, принято называть дифракцией волн.

    Наблюдение дифракции осуществляется обычно по следующей схеме. На пути световой волны, распространяющейся от некоторого источника, помещается непрозрачная преграда, закрывающая часть волновой поверхности световой волны. За преградой располагается экран, на котором возникает дифракционная картина.

    Различают два вида дифракции. Если источник света S и точка наблюденияP расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точкуP , образуют практически параллельные пучки, говорят одифракции в параллельных лучах или одифракции Фраунгофера . В противном случае говорят одифракции Френеля . Дифракцию Фраунгофера можно наблюдать, поместив за источником светаS и перед точкой наблюденияP по линзе так, чтобы точкиS иP оказались в фокальной плоскости соответствующей линзы (рис.).

    Принципиально дифракция Фраунгофера не отличается от дифракции Френеля. Количественный критерий, позволяющий установить, какой вид дифракции имеет место, определяется величиной безразмерного параметра , гдеb – характерный размер препятствия,l – расстояние между препятствием и экраном, на котором наблюдается дифракционная картина,– длина волны. Если

    Явление дифракции качественно объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени. Для монохроматической волны волновая поверхность есть поверхность, на которой колебания совершаются в одинаковой фазе.

    Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис.). Согласно Гюйгенсу, каждая точка выделяемого отверстием участка волнового фронта служит источником вторичных волн (в изотропной среде они сферические). Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т.е. огибает края отверстия.

    Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде, а, следовательно, и об интенсивности на фронте волны. Из повседневного опыта известно, что в большом числе случаев лучи света не отклоняются от их прямолинейного распространения. Так, предметы, освещенные точечным источником света, дают резкую тень. Таким образом, принцип Гюйгенса нуждается в дополнении, позволяющем определять интенсивность волны.

    Френель дополнил принцип Гюйгенса идеей интерференции вторичных волн. Согласно принципу Гюйгенса-Френеля , световая волна, возбуждаемая каким-либо источникомS , может быть представлена как результат суперпозиции когерентных вторичных волн, излучаемых малыми элементами некоторой замкнутой поверхности, охватывающей источникS . Обычно в качестве этой поверхности выбирают одну из волновых поверхностей, поэтому источники вторичных волн действуют синфазно. В аналитическом виде для точечного источника этот принцип записывается в виде

    , (1) гдеE – световой вектор, включающий в себя временную зависимость
    ,k – волновое число,r – расстояние от точкиP на поверхности S до точкиP ,K – коэффициент, зависящий от ориентации площадки по отношению к источнику и точкеP . Правомерность формулы (1) и вид функцииK устанавливается в рамках электромагнитной теории света (в оптическом приближении).

    В том случае, когда между источником S и точкой наблюденияP имеются непрозрачные экраны с отверстиями, действие этих экранов может быть учтено следующим образом. На поверхности непрозрачных экранов амплитуды вторичных источников считаются равными нулю; в области отверстий амплитуды источников такие же, как при отсутствии экрана (так называемое приближение Кирхгофа).

    Метод зон Френеля. Учет амплитуд и фаз вторичных волн позволяет в принципе найти амплитуду результирующей волны в любой точке пространства и решить задачу о распространении света. В общем случае расчет интерференции вторичных волн по формуле (1) довольно сложный и громоздкий. Однако ряд задач можно решить, применив чрезвычайно наглядный прием, заменяющий сложные вычисления. Метод этот получил название методазон Френеля .

    Суть метода разберем на примере точечного источника света S . Волновые поверхности представляют собой в этом случае концентрические сферы с центром в S .Разобьем изображенную на рисунке волновую поверхность на кольцевые зоны, построенные так, что расстояния от краев каждой зоны до точкиP отличаются на
    . Обладающие таким свойством зоны называютсязонами Френеля . Из рис. видно, что расстояниеот внешнего края – m -й зоны до точкиP равно

    , гдеb – расстояние от вершины волновой поверхностиO до точкиP .

    Колебания, приходящие в точку P от аналогичных точек двух соседних зон (например, точек, лежащих в середине зон или у внешних краев зон), находятся в противофазе. Поэтому колебания от соседних зон будут взаимно ослаблять друг друга и амплитуда результирующего светового колебания в точкеP

    , (2) где,, … – амплитуды колебаний, возбуждаемых 1-й, 2-й, … зонами.

    Для оценки амплитуд колебаний найдем площади зон Френеля. Пусть внешняя граница m -й зоны выделяет на волновой поверхности сферический сегмент высоты. Обозначив площадь этого сегмента через, найдем, что, площадьm -й зоны Френеля равна
    . Из рисунка видно, что. После несложных преобразований, учитывая
    и
    , получим

    . Площадь сферического сегмента и площадьm -й зоны Френеля соответственно равны

    ,
    . (3) Таким образом, при не слишком большихm площади зон Френеля одинаковы. Согласно предположению Френеля, действие отдельных зон в точкеP тем меньше, чем больше уголмежду нормальюn к поверхности зоны и направлением наP , т.е. действие зон постепенно убывает от центральной к периферийным. Кроме того, интенсивность излучения в направлении точкиP уменьшается с ростомm и вследствие увеличения расстояния от зоны до точкиP . Таким образом, амплитуды колебаний образуют монотонно убывающую последовательность

    Общее число зон Френеля, умещающихся на полусфере, очень велико; например, при
    и
    число зон достигает~10 6 . Это означает, что амплитуда убывает очень медленно и поэтому можно приближенно считать

    . (4) Тогда выражение (2) после перегруппировки суммируется

    , (5) так как выражения в скобках, согласно (4), равны нулю, а вклад последнего слагаемого ничтожно мал. Таким образом, амплитуда результирующих колебаний в произвольной точкеP определяется как бы половинным действием центральной зоны Френеля.

    При не слишком больших m высота сегмента
    , поэтому можно считать, что
    . Подставив значение для, получим для радиуса внешней границыm -й зоны

    . (6) При
    и
    радиус первой (центральной) зоны
    . Следовательно, распространение света отS кP происходит так, как если бы световой поток шел внутри очень узкого канала вдольSP , т.е. прямолинейно.

    Правомерность деления волнового фронта на зоны Френеля подтверждена экспериментально. Для этого используются зонная пластинка – в простейшем случае стеклянная пластинка, состоящая из системы чередующихся прозрачных и непрозрачных концентрических колец, с радиусами зон Френеля заданной конфигурации. Если поместить зонную пластинку в строго определенном месте (на расстоянии a от точечного источника и на расстоянииb от точки наблюдения), то результирующая амплитуда будет больше, чем при полностью открытом волновом фронте.

    Дифракция Френеля на круглом отверстии. Дифракция Френеля наблюдается на конечном расстоянии от препятствия, вызвавшего дифракцию, в данном случае экрана с отверстием. Сферическая волна, распространяющаяся от точечного источникаS , встречает на своем пути экран с отверстием. Дифракционная картина наблюдается на экране, параллельном экрану с отверстием. Ее вид зависит от расстояния между отверстием и экраном (для данного диаметра отверстия). Проще определить амплитуду световых колебаний в центре картины. Для этого разобьем открытую часть волновой поверхности на зоны Френеля. Амплитуда колебания, возбуждаемая всеми зонами равна

    , (7) где знак плюс отвечает нечетнымm и минус – четнымm .

    Когда отверстие открывает нечетное число зон Френеля, то амплитуда (интенсивность) в центральной точке будет больше, чем при свободном распространении волны; если четное то амплитуда (интенсивность) будет равна нулю. Например, если отверстие открывает одну зону Френеля, амплитуда
    , то интенсивность (
    ) больше в четыре раза.

    Расчет амплитуды колебания на внеосевых участках экрана более сложен, так как соответствующие зоны Френеля частично перекрываются непрозрачным экраном. Качественно ясно, что дифракционная картина будет иметь вид чередующихся темных и светлых колец с общим центром (если m четное, то в центре будет темное кольцо, еслиm нечетное – то светлое пятно), причем интенсивность в максимумах убывает с расстоянием от центра картины. Если отверстие освещается не монохроматическим светом, а белым светом, то кольца окрашены.

    Рассмотрим предельные случаи. Если отверстие открывает лишь часть централь­ной зоны Френеля, на экране получается размытое светлое пятно; чередования светлых и темных колец в этом случае не возникает. Если отверстие открывает большое число зон, то
    и амплитуда в центре
    , т.е. такая же, как и при полностью открытом волновом фронте; чередование светлых и темных колец происходит лишь в очень узкой области на границе геометрической тени. Фактически дифракционная картина не наблюдается, и распространение света, по сути, является прямолинейным.

    Дифракция Френеля на диске. Сферическая волна, распространяющаяся от точечного источникаS , встречает на своем пути диск (рис.). Дифракционная картина, наблюдаемая на экране, является центрально симметричной. Определим амплитуду световых колебаний в центре. Пусть диск закрываетm первых зон Френеля. Тогда амплитуда колебаний равна

    или
    , (8) так как выражения, стоящие в скобках, равны нулю. Следовательно, в центре всегда наблюдается дифракционный максимум (светлое пятно), соответствующий половине действия первой открытой зоны Френеля. Центральный максимум окружен концентрическими с ним темными и светлыми кольцами. При небольшом числе закрытых зон амплитуда
    мало отличается от. Поэтому интенсивность в центре будет почти такая же, как при отсутствии диска. Изменение освещенности экрана с расстоянием от центра картины изображено на рис.

    Рассмотрим предельные случаи. Если диск закрывает лишь небольшую часть центральной зоны Френеля, он совсем не отбрасывает тени – освещенность экрана всюду остается такой же, как при отсутствии диска. Если диск закрывает много зон Френеля, чередование светлых и темных колец наблюдается только в узкой области на границе геометрической тени. В этом случае
    , так что светлое пятно в центре отсутствует, и освещенность в области геометрической тени практически всюду равна нулю. Фактически дифракционная картина не наблюдается, и распространение света является прямолинейным.

    Дифракция Фраунгофера на одной щели. Пусть плоская монохроматическая волна падает нормально плоскости узкой щели ширинойa . Оптическая разность хода между крайними лучами, идущими от щели в некотором направлении

    .

    Разобьем открытую часть волновой поверхности в плоскости щели на зоны Френеля, имеющие вид равновеликих полос, параллельных щели. Так как ширина каждой зоны выбирается такой, чтобы разность хода от краев этих зон была равна
    , то на ширине щели уместится
    зон. Амплитуды вторичных волн в плоскости щели будут равны, так как зоны Френеля имеют одинаковые площади и одинаково наклонены к направлению наблюдения. Фазы колебаний от пары соседних зон Френеля отличаются на, поэтому, суммарная амплитуда этих колебаний равна нулю.

    Если число зон Френеля четное, то

    , (9а) и в точкеB наблюдается минимум освещенности (темный участок), если же число зон Френеля нечетное, то

    (9б) и наблюдается близкая к максимуму освещенность, соответствующей действию одной нескомпенсированной зоны Френеля. В направлении
    щель действует, как одна зона Френеля, и в этом направлении наблюдается наибольшая освещенность, точкесоответствует центральный или главный максимум освещенности.

    Расчет освещенности в зависимости от направления дает

    , (10) где– освещенность в середине дифракционной картины (против центра линзы),– освещенность в точке, положение которой определяется направлением. График функции (10) изображен на рис. Максимумы освещенности соответствуют значениям, удовлетворяющие условиям

    ,
    ,
    и т.д. Вместо этих условий для максимумов приближенно можно пользоваться соотношением (9б), дающим близкие значения углов. Величина вторичных максимумов быстро убывает. Численные значения интенсивностей главного и следующих максимумов относятся как

    и т.д., т.е. основная часть световой энергии, прошедшей через щель, сосредоточена в главном максимуме.

    Сужение щели приводит к тому, что центральный максимум расплывается, а его освещенность уменьшается. Наоборот, чем щель шире, тем картина ярче, но дифракционные полосы уже, а число самих полос больше. При
    в центре получается резкое изображение источника света, т.е. имеет место прямолинейное распространение света.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!