Мода и стиль. Красота и здоровье. Дом. Он и ты

Атомное ядро: заряд ядра. Строение и заряд ядра атома

Из планетарной модели строения атомов нам известно, что атом представляет собой ядро, и вращающееся вокруг него облако электронов. Причем расстояние между электронами и ядром в десятки и сотни тысяч раз больше, чем размер самого ядра.

Что же представляет собой само ядро? Это маленький твердый неделимый шарик или оно состоит из более мелких частиц? Ни один существующий в мире микроскоп не в состоянии наглядно показать нам, что происходит на таком уровне. Там все слишком маленькое. Тогда как быть? Возможно ли вообще изучить физику атомного ядра? Как узнать состав и характеристики атомного ядра, если исследовать его нет возможности?

Заряд ядра атома

Самыми разнообразными косвенными опытами, высказывая гипотезы и проверяя их на практике, путем проб и ошибок, ученым удалось исследовать строение атомного ядра. Оказалось, что ядро состоит из еще более мелких частиц. От количества этих частиц зависит размер ядра, его заряд и химические свойства вещества. Причем частицы эти обладают положительным зарядом, что и компенсирует отрицательный заряд электронов атома. Частицы эти назвали протонами. Их количество в нормальном состоянии всегда равно количеству электронов. Вопрос, как определить заряд ядра, больше не стоял. Заряд ядра атома в нейтральном состоянии всегда равен числу вращающихся вокруг него электронов и противоположен по знаку заряду электронов. А определять количество и заряд электронов физики уже научились.

Строение атомного ядра: протоны и нейтроны

Однако в процессе дальнейших исследований возникла новая проблема. Оказалось, что протоны, обладая одинаковым зарядом, в некоторых случаях вдвое различаются по массе. Это вызвало множество вопросов и не состыковок. В конце концов, удалось установить, что в состав атомного ядра, кроме протонов входят еще некие частицы, практически равные протонам по массе, однако не обладающие никаким зарядом. Частицы эти назвали нейтронами. Обнаружение нейтронов разрешило все не состыковки в расчетах. В итоге протоны и нейтроны, как составляющие элементы ядра получили название нуклонов. Расчет любых значений, касающихся характеристик ядра, стал значительно более простым понятным. В образовании заряда ядра нейтроны участия не принимают, поэтому влияние их на химические свойства вещества практически не проявляется, однако нейтроны участвуют в образовании массы ядер, соответственно, влияют на гравитационные свойства ядра атома. Таким образом, присутствует некоторое косвенное влияние нейтронов на свойства вещества, но оно крайне незначительно.

То, что все предметы состоят из элементарных частиц, предполагали еще ученые Древней Греции. Но ни доказать этот факт, ни опровергнуть в те времена не было никакой возможности. Да и о свойствах атомов в древности могли лишь догадываться, основываясь на собственных наблюдениях за различными веществами.

Доказать, что все вещества состоят из элементарных частиц, удалось лишь в 19-м веке и то косвенно. В это же время физики и химики по всему миру пытались создать единую теорию элементарных частиц, описывающую их строение и объясняющую различные свойства, такие, например, как заряд ядра.

Изучению молекул, атомов и их строения были посвящены труды многих ученых. Физика постепенно перешла в изучение микромира - элементарных частиц, их взаимодействия и свойств. Ученые стали интересоваться, из чего состоит выдвигать гипотезы и пытаться их доказать, хотя бы косвенно.

В результате в качестве базовой теории была принята планетарная предложенная Эрнестом Резерфордом и Нильсом Бором. Согласно этой теории, заряд ядра любого атома положительный, в то время как по его орбитам вращаются отрицательно заряженные электроны, в итоге делая атом электрически нейтральным. Со временем данная теория была многократно подтверждена разного рода экспериментами, начиная с опытов одного из ее соавторов.

Современная ядерная физика считает теорию Резерфорда-Бора фундаментальной, все исследования атомов и их элементов основываются на ней. С другой стороны большинство гипотез, появившихся за последние 150 лет, практически так и не были подтверждены. Получается, что ядерная физика в своем большинстве является теоретической ввиду сверхмалых размеров изучаемых объектов.

Конечно же, в современном мире определить заряд ядра алюминия, например (или любого другого элемента) намного проще, чем в 19-м веке и тем более — в Древней Греции. Но делая новые открытия в данной области, ученые порой приходят к удивительным заключениям. Пытаясь найти решение одной задачи, физика сталкивается с новыми проблемами и парадоксами.

Изначально теория Резерфорда говорит о том, что химические свойства вещества зависят от того, каков заряд ядра его атома и, как следствие, от числа электронов, вращающихся по его орбитам. Современная химия и физика в полной мере подтверждают данную версию. Несмотря на то, что изучение структуры молекул изначально отталкивалось от простейшей модели — атома водорода, заряд ядра которого равен 1, теория в полной мере распространяется на все элементы таблицы Менделеева, включая и полученные искусственным путем в конце прошлого тысячелетия.

Любопытно, что еще задолго до исследований Резерфорда английский химик, врач по образованию Вильям Проут заметил, что удельный вес различных веществ кратен данному показателю водорода. Он тогда предположил, что все иные элементы попросту состоят из водорода на каком-то простейшем уровне. Что, например, частица азота — это 14 таких минимальных частиц, кислорода - 16 и т. д. Если рассматривать данную теорию глобально в современной интерпретации, то в целом она верна.

Атом - это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z - порядковый номер данного элемента в периодической системе химических элементов, е - величина элементарного электрического заряда.

Электрон - это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10 -19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К - оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц - протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны - это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента - водорода. Число протонов в ядре равно Z. Нейтрон - это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А - Z, где А - массовое число данного изотопа (см. ). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны - . Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Атом (греч. atomos - неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е - элементарный электрический заряд, равный по величине заряду электрона (4,8·10 -10 эл.-ст. ед.), и Z - атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10 -28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А-Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10 -8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С 12 , принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы - электроны, протоны, атомы и т. д.,- кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии. Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е 0 , в какое-либо из возбужденных состояний E i происходит при поглощении определенной порции энергии Е i - Е 0 . Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= E i - Е k где h - постоянная Планка (6,62·10 -27 эрг·сек), v - частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.

Строение атома – это одна из базовых тем курса химии, которая основана на знании пользоваться таблицей «Периодическая система химических элементов Д.И.Менделеева». Это не только классифицированные и расположенные по определенным законам химические элементы, но и кладезь информации, в том числе и о строении атома . Зная особенности чтения этого неповторимого справочного материала, дозволено дать полную добротную и количественную колляцию атому.

Вам понадобится

  • Таблица Д.И.Менделеева

Инструкция

1. В таблице Д.И.Менделеева, как в многоэтажном многоквартирном доме «живут» химические элементы, весь из которых занимает свою собственную квартиру. Таким образом, всякий из элементов имеет определенный порядковый номер, указанный в таблице. Нумерация химических элементов начинается слева направо, причем сверху. В таблице горизонтальные ряды именуются периодами, а вертикальные столбцы – группами. Это немаловажно, так как по номеру группы либо периода дозволено также дать колляцию некоторым параметрам атома .

2. Атом представляет собой химически неделимую частицу, но при этом состоящую из больше мелких комбинированных частей, к которым дозволено отнести протоны (правильно заряженные частицы), электроны (заряжены негативно) и нейтроны (нейтральные частицы). Основная масса атома сфокусирована в ядре (за счет протонов и нейтронов), вокруг которого вращаются электроны. В совокупности атом электронейтрален, то есть в нем число правильных зарядов совпадает с числом негативных, следственно, число протонов и электронов идентично. Правильный заряд ядра атома имеет место быть как раз за счет протонов.

3. Нужно запомнить, что порядковый номер химического элемента количественно совпадает с зарядом ядра атома . Следственно, дабы определить заряд ядра атома нужно посмотреть, под каким номером находится данный химический элемент.

4. Пример № 1. Определить заряд ядра атома углерода (С). Начинаем исследовать химический элемент углерод, ориентируясь на таблицу Д.И.Менделеева. Углерод находится в «квартире» № 6. Следственно, он имеет заряд ядра +6 за счет 6 протонов (правильно заряженных частиц), которые располагаются в ядре. Рассматривая, что атом электронейтрален, значит, электронов тоже будет 6.

5. Пример № 2. Определить заряд ядра атома алюминия (Al). Алюминий имеет порядковый номер – № 13. Следственно, заряд ядра атома алюминия +13 (за счет 13 протонов). Электронов также будет 13.

6. Пример № 3. Определить заряд ядра атома серебра (Ag). Серебро имеет порядковый номер – № 47. Значит, заряд ядра атома серебра + 47 (за счет 47 протонов). Электронов также 47.

Атом химического элемента состоит из ядра и электронной оболочки. Ядро – это центральная часть атома, в котором сконцентрирована примерно каждая его масса. В различие от электронной оболочки, ядро имеет правильный заряд .

Вам понадобится

  • Атомный номер химического элемента, закон Мозли

Инструкция

1. Ядро атома состоит из 2-х типов частиц – протонов и нейтронов. Нейтроны являются электронейтральными частицами, то есть их электрический заряд равен нуля. Протоны являются позитивно заряженными частицами и их электрический заряд равен +1.

2. Таким образом, заряд ядра равен числу протонов. В свою очередь, число протонов в ядре равно ядерному номеру химического элемента. К примеру, ядерный номер водорода – 1, то есть ядро водорода состоит из одного протона имеет заряд +1. Ядерный номер натрия – 11, заряд его ядра равен +11.

3. При альфа-распаде ядра его его ядерный номер уменьшается на два за счет испускания альфа-частицы (ядра атома гелия). Таким образом, число протонов в ядре, испытавшем альфа-распад, также уменьшается на два.Бета-распад может протекать в 3 разных видах. В случае распада «бета-минус» нейтрон превращается в протон при испускании электрона и антинейтрино. Тогда заряд ядра возрастает на единицу.В случае распада «бета-плюс» протон превращается в нейтрон, позитрон и нйтрино, заряд ядра уменьшается на единицу.В случае электронного захвата заряд ядра также уменьшается на единицу.

4. Заряд ядра дозволено также определить по частоте спектральных линий характеристического излучения атома. Согласно закону Мозли: sqrt(v/R) = (Z-S)/n, где v – спектральная частота характеристического излучения, R – непрерывная Ридберга, S – непрерывная экранирования, n – основное квантовое число.Таким образом, Z = n*sqrt(v/r)+s.

Видео по теме

Атом – мельчайшая частица всего элемента, которая несет его химические свойства. Как существование, так и строение атома являлось предметом рассуждений и постижений с древних времен. Было установлено, что строение атомов сродни строению Ясной системы: в центре ядро, занимающее дюже немного места, но сфокусировавшее в себе примерно всю массу; вокруг него вращаются «планеты» – электроны, несущие негативные заряды . А как дозволено обнаружить заряд ядра атома?

Инструкция

1. Всякий атом электрически нейтрален. Но, от того что электроны несут негативные заряды , они обязаны быть уравновешены противоположными зарядами. Так и есть. Позитивные заряды несут частицы под наименованием «протоны», расположенные в ядре атома. Протон значительно громоздче электрона: он весит столько же, сколько 1836 электронов!

2. Самый примитивный случай – атом водорода первого элемента Периодической таблицы. Посмотрев в таблицу, вы удостоверитесь, что он занимает место под первым номером, а его ядро состоит из исключительного протона, вокруг которого вращается исключительный электрон. Из этого следует, что заряд ядра атома водорода равен +1.

3. Ядра других элементов состоят теснее не только из протонов, но и из так называемых «нейтронов». Как вы легко можете осознать из самого наименования, нейтроны вообще не несут никакого заряда – ни негативного, ни правильного. Следственно запомните: сколько бы нейтронов не входило в состав ядерного ядра , они влияют лишь на его массу, но не на заряд.

4. Следственно, величина позитивно заряда ядра атома зависит лишь от того, сколько протонов в нем содержится. Но от того что, как теснее указывалось, атом электрически нейтрален, в его ядре должно содержаться столько же протонов, сколько электронов вращается вокруг ядра . Число же протонов определяется порядковым номером элемента в Таблице Менделеева.

5. Разглядите несколько элементов. Скажем, знаменитый и животрепещуще нужный кислород находится в «ячейке» под номером 8. Следственно, в его ядре содержатся 8 протонов, и заряд ядра будет +8. Сталь занимает «ячейку» с номером 26, и, соответственно, имеет заряд ядра +26. А порядочный металл – золото, с порядковым номером 79 – будет иметь верно такой же заряд ядра (79), со знаком +. Соответственно, в атоме кислорода содержится 8 электронов, в атоме железа – 26, а в атоме золота – 79.

Видео по теме

В обыкновенных условиях атом электрически нейтрален. При этом ядро атома, состоящее из протонов и нейтронов, заряжено одобрительно, а электроны несут негативный заряд. При избытке либо недостатке электронов атом превращается в ион.

Инструкция

1. Всякий химический элемент имеет свой неповторимый заряд ядра. Именно заряд определяет номер элемента в периодической системе. Так, ядро водорода имеет заряд +1, гелия +2, лития +3, бериллия +4 и т.д. Таким образом, если вестим элемент, заряд ядра его атома дозволено определить из таблицы Менделеева.

2. От того что при обыкновенных условиях атом электрически нейтрален, число электронов соответствует заряду ядра атома. Негативный заряд электронов компенсируется позитивным зарядом ядра. Электростатические силы удерживают электронные облака возле атома, что обеспечивает его стабильность.

3. При воздействии определенных условий у атома дозволено отнимать электроны либо присоединять к нему добавочные. Если отнять электрон от атома, атом превращается в катион – правильно заряженный ион. При избыточном числе электронов атом становится анионом – негативно заряженным ионом.

4. Химические соединения могут иметь молекулярную либо ионную природу. Молекулы также электрически нейтральны, а ионы несут в себе определенный заряд. Так, молекула аммиака NH3 нейтральна, а вот ион аммония NH4+ заряжен правильно. Связи между атомами в молекуле аммиака ковалентные, образованные по обменному типу. Четвертый атом водорода присоединяется по донорно-акцепторному механизму, это тоже ковалентная связь. Аммоний образуется при взаимодействии аммиака с растворами кислот.

5. Главно понимать, что заряд ядра элемента не зависит от химических перевоплощений. Сколько электронов ни добавляй и ни отнимай, заряд ядра останется тем же. К примеру, атом O, анион O- и катион O+ характеризуются одним и тем же зарядом ядра +8. При этом атом имеет 8 электронов, анион 9, катион – 7. Само ядро дозволено изменить только путем ядерных метаморфоз.

6. Особенно частый вид ядерных реакций – радиоактивный распад, тот, что может происходить в натуральной среде. Ядерная масса элементов, подвергающихся в природе такому распаду, заключена в квадратные скобки. Это обозначает, что массовое число непостоянно, меняется на протяжении времени.

В периодической системе элементов Д.И. Менделеева серебро имеет порядковый номер 47 и обозначение «Ag» (argentum). Наименование этого металла, возможно, случилось от латинского «argos», что обозначает «белый», «блистающий».

Инструкция

1. Серебро было знаменито обществу еще в IV тысячелетии до нашей эпохи. В Старинном Египте его называли даже «белым золотом». Данный дорогой металл встречается в природе как в самородном виде, так и в виде соединений, скажем, сульфидов. Серебряные самородки владеют огромным весом и зачастую содержат примеси золота, ртути, меди, платины, сурьмы и висмута.

2. Химические свойства серебра.Серебро относится к группе переходных металлов и владеет всеми свойствами металлов. Впрочем химическая активность серебра невелика – в электрохимическом ряду напряжений металлов оно находится правее водорода, примерно в самом конце. В соединениях серебро почаще каждого проявляет степень окисления +1.

3. При обыкновенных условиях серебро не реагирует с кислородом, водородом, азотом, углеродом, кремнием, но взаимодействует с серой, образуя сульфид серебра: 2Ag+S=Ag2S. При нагревании серебро взаимодействует с галогенами: 2Ag+Cl2=2AgCl?.

4. Растворимый нитрат серебра AgNO3 применяется для добротного определения галогенид-ионов в растворе – (Cl-), (Br-), (I-): (Ag+)+(Hal-)=AgHal?. К примеру, при взаимодействии с анионами хлора серебро дает нерастворимый белый осадок AgCl?.

5. Отчего серебряные изделия меркнут на воздухе?Повод постепенного потемнения изделий из серебра объясняется тем, что серебро реагирует с содержащимся в воздухе сероводородом. В итоге этого на поверхности металла образуется пленка Ag2S: 4Ag+2H2S+O2=2Ag2S+2H2O.

6. Как серебро взаимодействует с кислотами?С разбавленными соляной и серной кислотами серебро, как и медь, не взаимодействует, от того что является металлом низкой активности и не может вытеснять из них водород. Кислоты-окислители, азотная и концентрированная серная кислоты, растворяют серебро: 2Ag+2H2SO4(конц.)=Ag2SO4+SO2?+2H2O; Ag+2HNO3(конц.)=AgNO3+NO2?+H2O; 3Ag+4HNO3(разб.)=3AgNO3+NO?+2H2O.

7. Если к раствору нитрата серебра добавить щелочь, получится темно-каштановый осадок оксида серебра Ag2O: 2AgNO3+2NaOH=Ag2O?+2NaNO3+H2O.

8. Как и соединения одновалентной меди, нерастворимые осадки AgCl и Ag2O способны растворяться в растворах аммиака, давая комплексные соединения: AgCl+2NH3=Cl; Ag2O+4NH3+H2O=2OH. Последнее соединение зачастую используют в органической химии в реакции «серебряного зеркала» – добротной реакции на альдегидную группу.

Углерод – это один из химических элементов, имеющий в периодической таблице символ С. Его порядковый номер – 6, ядерная масса – 12,0107 г/моль, радиус атома – 91 пм. Своим наименованием углерод обязан русским химикам, которые вначале присвоили элементу имя «углетвор», после этого трансформировавшееся в нынешнее.

Инструкция

1. Применялся углерод в промышленности еще глубокой древности, когда кузнецы использовали его при выплавке металлов. Обширно знамениты две аллотропные модификации химического элемента – алмаз, применяемый в ювелирной и индустриально отраслях, а также графит, за открытие которого незадолго была присуждена Нобелевская премия. Еще Антуан Лавуазье проводил первые навыки с так называемым чистым углем, после этого его свойства отчасти изучила группа ученых – Гитон де Морво, собственно сам Лавуазье, Бертолле и Фуркруа, которые описали свой навык в книге «Способ химической номенклатуры».

2. Впервой вольный углерод вывел британец Теннант, тот, что пропустил пары фосфора над раскаленным мелом и получил фосфат кальция совместно с углеродом. Продолжил навыки британского сотрудники француз Гитон де Морво. Он осмотрительно нагрел алмаз, в итоге чего превратил его в графит и позже в угольную кислоту.

3. Углерод владеет достаточно многообразными физическими свойствами по причине образования химических связей разного типа. Теснее вестимо, что данный химический элемент непрерывно образуется в нижних слоях стратосферы, а его свойства еще с 50-х годов обеспечили углероду место на АЭС и в ядерных водородных бомбах.

4. Физики выделяют несколько форм либо конструкций углерода: тетрическую, тригональную и диагональную. У него есть и несколько кристаллических вариаций – алмаз, графен, графит, карбин, лонсдейлит, наноалмаз, фуллерен, фуллерит, углеродное волокно, нановолокно и нанотрубки. Есть формы и у аморфного углерода: активированный и древесный уголь, ископаемый уголь либо антрацит, камменоугольный либо нефтяной кокс, стеклоуглерод, техуглерод, сажа и углеродная нанопленка. Физики также разделяют и коластерные вариации – астралены, диуглероды и углеродные наноконусы.

5. Углерод достаточно инертен в условиях отсутствия экстремальных температур, а при достижении их верхнего порога горазд соединяться с другими химическими элементами, проявляя сильнейшие восстановительные свойства.

6. Вероятно, особенно знаменитым использованием углерода является карандашная промышленность, где его смешивают с глиной для меньшей ломкости. Его используют и в качестве смазочного средства при дюже высоких либо низких температурах, а высокая температура плавления дает вероятность производить из углерода крепкие тигли для заливки металлов. Графит также очаровательно проводит электрический ток, что дает огромные перспективы для использования его в электронике.

Видео по теме

Обратите внимание!
В таблице Д.И.Менделеева в одной клетке для всего химического элемента указаны два числовых значения. Не путайте порядковый номер и относительную ядерную массу элемента

Инструкция

В таблице Д.И.Менделеева, как в многоэтажном многоквартирном доме « » химические элементы, каждый из которых занимает свою собственную квартиру. Таким образом, каждый из элементов имеет определенный порядковый номер, указанный в таблице. Нумерация химических элементов начинается слева направо, причем сверху. В таблице горизонтальные ряды называются периодами, а вертикальные столбцы – группами. Это немаловажно, потому что по номеру группы или периода можно также дать характеристику некоторым параметрам атома .

Атом представляет собой химически неделимую , но при этом состоящую из более мелких составных частей, к которым можно отнести (положительно заряженные частицы), (заряжены отрицательно) (нейтральные частицы). Основная масса атома в ядре (за счет протонов и нейтронов), вокруг которого вращаются электроны. В целом атом электронейтрален, то есть в нем количество положительных зарядов совпадает с количеством отрицательных, следовательно, число протонов и одинаково. Положительный заряд ядра атома имеет место быть как раз за счет протонов.

Пример № 1. Определить заряд ядра атома углерода (С). Начинаем анализировать химический элемент углерод, ориентируясь на таблицу Д.И.Менделеева. Углерод находится в «квартире» № 6. Следовательно, он ядра +6 за счет 6 протонов (положительно заряженных частиц), которые располагаются в ядре. Учитывая, что атом электронейтрален, значит, электронов тоже будет 6.

Пример № 2. Определить заряд ядра атома алюминия (Al). Алюминий имеет порядковый номер - № 13. Следовательно, заряд ядра атома алюминия +13 (за счет 13 протонов). Электронов также будет 13.

Пример № 3. Определить заряд ядра атома серебра (Ag). Серебро имеет порядковый номер - № 47. Значит, заряд ядра атома серебра + 47 (за счет 47 протонов). Электронов также 47.

Обратите внимание

В таблице Д.И.Менделеева в одной клетке для каждого химического элемента указаны два числовых значения. Не путайте порядковый номер и относительную атомную массу элемента

Атом химического элемента состоит из ядра и электронной оболочки. Ядро - это центральная часть атома, в котором сосредоточена почти вся его масса. В отличие от электронной оболочки, ядро имеет положительный заряд .

Вам понадобится

  • Атомный номер химического элемента, закон Мозли

Инструкция

Таким образом, заряд ядра равен количеству протонов. В свою очередь, количество протонов в ядре равно атомному номеру . К примеру, атомный номер водорода - 1, то есть ядро водорода состоит из одного протона имеет заряд +1. Атомный номер натрия - 11, заряд его ядра равен +11.

При альфа-распаде ядра его его атомный номер уменьшается на два за счет испускания альфа-частицы (ядра атома ). Таким образом, количество протонов в ядре, испытавшем альфа-распад, также уменьшается на два.
Бета-распад может происходить в трех различных . В случае распада «бета-минус» нейтрон превращается в при испускании и антинейтрино. Тогда заряд ядра на единицу.
В случае распада «бета-плюс» протон превращается в нейтрон, позитрон и нйтрино, заряд ядра уменьшается на единицу.
В случае электронного захвата заряд ядра также уменьшается на единицу.

Заряд ядра можно также определить по частоте спектральных линий характеристического излучения атома. Согласно закону Мозли: sqrt(v/R) = (Z-S)/n, где v - спектральная характеристического излучения, R - постоянная Ридберга, S - постоянная экранирования, n - главное квантовое число.
Таким образом, Z = n*sqrt(v/r)+s.

Видео по теме

Источники:

  • как изменяется заряд ядра

Атом – мельчайшая частица каждого элемента, которая несет его химические свойства. Как существование, так и строение атома являлось предметом рассуждений и изучений с древних времен. Было установлено, что строение атомов сродни строению Солнечной системы: в центре ядро, занимающее очень мало места, но сосредоточившее в себе почти всю массу; вокруг него вращаются «планеты» - электроны, несущие отрицательные заряды . А как можно найти заряд ядра атома?

Инструкция

Любой атом электрически нейтрален. Но, поскольку несут отрицательные заряды , они должны быть уравновешены противоположными зарядами. Так и есть. Положительные заряды несут частицы под названием «протоны», расположенные в ядре атома. Протон гораздо массивнее электрона: он весит столько же, сколько 1836 электронов!

Самый простой случай – атом водорода первого элемента Периодической таблицы. Посмотрев в таблицу, вы убедитесь, что он под первым номером, а его ядро состоит из единственного протона, вокруг которого вращается единственный . Из этого следует, что ядра атома водорода равен +1.

Ядра других элементов состоят уже не только из протонов, но и из так называемых «нейтронов». Как вы легко можете из самого названия, вообще не несут никакого заряда – ни отрицательного, ни положительного. Поэтому запомните: сколько бы нейтронов не входило в состав атомного ядра , они влияют лишь на его массу, но не на заряд.

Следовательно, величина положительно заряда ядра атома зависит лишь от того, сколько протонов в нем содержится. Но поскольку, как уже указывалось, атом электрически нейтрален, в его ядре должно содержаться столько же протонов, вращается вокруг ядра . Количество же протонов определяется порядковым номером элемента в Таблице Менделеева.

Рассмотрите несколько элементов. Например, известный и жизненно необходимый кислород находится в «ячейке» под номером 8. Следовательно, в его ядре содержатся 8 протонов, и заряд ядра будет +8. Железо занимает «ячейку» с номером 26, и, соответственно, имеет заряд ядра +26. А металл - , с порядковым номером 79 - будет иметь точно такой же заряд ядра (79), со знаком +. Соответственно, в атоме кислорода содержится 8 электронов, в атоме – 26, а в атоме золота – 79.

Видео по теме

В обычных условиях атом электрически нейтрален. При этом ядро атома, состоящее из протонов и нейтронов, положительно, а электроны несут отрицательный заряд. При избытке или недостатке электронов атом превращается в ион.

Инструкция

Химические соединения могут иметь молекулярную или ионную природу. Молекулы также электрически нейтральны, а ионы несут в себе некоторый заряд. Так, молекула аммиака NH3 нейтральна, а вот ион аммония NH4+ заряжен положительно. Связи в молекуле аммиака , образованные по обменному типу. Четвертый атом водорода присоединяется по донорно-акцепторному механизму, это тоже ковалентная связь. Аммоний образуется при взаимодействии аммиака с растворами кислот.

Важно понимать, что заряд ядра элемента не зависит от химических превращений. Сколько электронов ни добавляй и ни отнимай, заряд ядра останется тем же. К примеру, атом O, анион O- и катион O+ характеризуются одним и тем же зарядом ядра +8. При этом атом имеет 8 электронов, анион 9, катион - 7. Само ядро можно изменить только путем ядерных превращений.

Наиболее частый вид ядерных реакций – радиоактивный распад, который может протекать в естественной среде. Атомная масса элементов, подвергающихся в такому распаду, заключена в квадратные скобки. Это означает, что массовое число непостоянно, меняется на протяжении времени.

В периодической системе элементов Д.И. Менделеева серебро имеет порядковый номер 47 и обозначение «Ag» (argentum). Название этого металла, вероятно, произошло от латинского «argos», что означает «белый», «блистающий».

Инструкция

Серебро было известно человечеству еще в IV тысячелетии до нашей эры. В Древнем Египте его называли даже «белым золотом». Этот металл встречается в природе как в самородном виде, так и в виде соединений, например, сульфидов. Серебряные самородки обладают большим весом и часто содержат примеси золота, ртути, меди, платины, сурьмы и висмута.

Химические свойства серебра.

Серебро относится к группе переходных металлов и обладает всеми свойствами металлов. Однако активность серебра невелика – в электрохимическом ряду напряжений металлов оно находится правее водорода, почти в самом конце. В соединениях серебро чаще всего проявляет степень окисления +1.

При обычных условиях серебро не реагирует с кислородом, водородом, азотом, углеродом, кремнием, но взаимодействует с серой, образуя сульфид серебра: 2Ag+S=Ag2S. При нагревании серебро взаимодействует с галогенами: 2Ag+Cl2=2AgCl↓.

Растворимый нитрат серебра AgNO3 используется для качественного определения галогенид-ионов в растворе – (Cl-), (Br-), (I-): (Ag+)+(Hal-)=AgHal↓. К примеру, при взаимодействии с анионами хлора серебро дает нерастворимый белый осадок AgCl↓.

Почему серебряные изделия темнеют на воздухе?

Причина постепенного изделий из серебра объясняется тем, что серебро реагирует с содержащимся в воздухе сероводородом. В результате этого на поверхности металла образуется пленка Ag2S: 4Ag+2H2S+O2=2Ag2S+2H2O.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!